國外關(guān)于直流分量對電力變壓器影響研究頗多,直流分量的存在對于電力變壓器鐵芯的影響與電磁式電流互感器影響關(guān)注點略有不同,直流分量會導(dǎo)致電力變壓器鐵芯及其附近產(chǎn)生溫升,同時在設(shè)備殼體監(jiān)測到振動現(xiàn)象,均嚴(yán)重危害其正常運行。1989年,更是由于地磁感應(yīng)直流導(dǎo)致電網(wǎng)變壓器工作失衡,在加拿大魁北克地區(qū)造成電力系統(tǒng)失穩(wěn),隨后出現(xiàn)電網(wǎng)崩潰。在直流分量對鐵芯磁化程度對于電流互感器計量性能影響方面,捷克理工大學(xué)的 Karel Draxler 等人利用交直流電源作為信號源,通過羅氏線圈作為標(biāo)準(zhǔn)互感器輸出標(biāo)準(zhǔn)信號,被測電磁式互感器輸出作為被檢信號,使用可變負(fù)載的電力電子模塊作為被測互感器的負(fù)載,探究了直流分量大小以及負(fù)載功率因素變化對于比差和角差的影響。結(jié)果表明,隨著負(fù)載的增加,直流偏磁將會使鐵芯磁化程度加深,表現(xiàn)在測量結(jié)果上為比差向正方向增大,角差向負(fù)方向增大。使用高質(zhì)量的分流器:選擇具有高精度和低溫度系數(shù)的分流器,能夠更好地保持電流的分配比例。濟南計量級電流傳感器發(fā)展現(xiàn)狀
為了簡化運算,按照自激振蕩磁通門電路, 激磁磁芯選取高磁導(dǎo)率、 低剩磁、低矯頑力的鐵磁材料,鐵芯 C1 磁化曲線模型選擇三折線分段線性化函數(shù)模型 表示, 并忽略鐵芯磁滯效應(yīng), 在線性區(qū) A 的激磁電感為 L,在正向飽和區(qū) B 及負(fù)向飽和 區(qū) C 的激磁電感為 l,且滿足 L>>l。假設(shè)零時刻時,激磁電流 iex 達(dá)到負(fù)向充電最大電流 I-m ,且零時刻激磁方波電壓由 負(fù)向峰值 VOL 躍變?yōu)檎蚍逯?VOH。同時滿足-VOL=VOH=Vout ,正負(fù)向激磁電流峰值仍然 滿足 I+m=-I-m=Im=ρVOH/RS連云港內(nèi)阻測試儀電流傳感器生產(chǎn)廠家激磁電壓頻率大于一次交流頻率,因此可以將一次交流在每個極短的激磁電壓周期內(nèi),看作緩慢變化的直流信號。
根據(jù)前述假設(shè),Im<<IC且在線性區(qū)A激磁電感L遠(yuǎn)大于飽和區(qū)B、C激磁電感l(wèi),因此τ2>>τ1,因此式(2-31)進(jìn)一步化簡得:T=TP+TN=(IC一4Ith(I)th(β(IC)Ip(一)I(h)(τ2Ith(一)Ip1)(2-32)根據(jù)式(2-27)(2-30)(2-32)可求得激磁電壓信號Vex在一個周波內(nèi)平均電壓Vav滿足:Vav=Vout=ICβ一II(p1)thVout(2-33)根據(jù)前述假設(shè)Ith<<IC可進(jìn)一步對式(2-33)分母進(jìn)行化簡,帶入下列表達(dá)式IC=Vout/Rsum,β=Np/N1,iex=Vout/(RC+RS)及Rsum=RC+RS可進(jìn)一步得激磁電流平均值iav滿足:iav=一(2-34)式(2-34)即為平均電流模型基于磁化曲線的分段線性化模型所得激磁電流與一次電流之間的定量關(guān)系式,即自激振蕩磁通門電路激磁電流平均值與一次電流之間呈線性比例關(guān)系,且激磁電流平均值正負(fù)與一次電流方向相關(guān)。自激振蕩磁通門電路可以識別電流方向且激磁電流平均值與一次電流量值線性相關(guān),這便為自激振蕩磁通門電路測量交流及交直流提供了理論上的可行性,現(xiàn)對IP為交直流電流時,自激振蕩磁通門電路測量原理進(jìn)行分析。
偶次諧波法進(jìn)行了分析,該方法簡單、有效,但是檢測電路復(fù)雜,精度較低,溫漂較大。因此為改善磁通門技術(shù)的現(xiàn)狀,吉林大學(xué)程福德團隊提出了時間差型磁通門,該方法有可能解決現(xiàn)有磁通門分辨力、測量精度難以繼續(xù)提高的問題,是磁通門研究中一個值得重視的方向; g Velasco-Quesada等提出了零磁通反饋式磁通門,使磁芯工作在零磁通狀態(tài)下,有效減小磁滯對測量的影響; Takahiro Kudo等給出了一種通過測量輸出信號峰值位置變化的方法得到被測電流的關(guān)鍵材料供給保持穩(wěn)定增長。鋰電池一階材料環(huán)節(jié)。
傳統(tǒng)的自激振蕩磁通門電路測量直流是通過測量采樣電阻上的電壓信號進(jìn)行信號 采集, 其中有用信號為采樣電阻上電壓信號的平均值, 實際電路在測量直流時通過低通 濾波器 LPF 即可完成平均值電壓信號解調(diào)。然而當(dāng)測量交直流信號時, 由于一次側(cè)電流 中有交流信號, 其在激磁繞組上產(chǎn)生的感應(yīng)電流信號勢必會影響鐵芯激磁過程, 此時鐵 芯的激磁過程變得更為復(fù)雜, 非線性特征更為明顯, 使激磁電流中產(chǎn)生大量高頻的無用 諧波, 而低通濾波器 LPF 雖然結(jié)構(gòu)簡單, 成本低,但是其濾波效果有限, 導(dǎo)致高頻諧波 濾波后仍有殘留, 其伴隨有用信號進(jìn)入誤差控制模塊,將影響終測量結(jié)果的準(zhǔn)確性。 因此,本文設(shè)計的新型交直流電流傳感器,通過低通濾波器 LPF 配合高通濾波器 HPF 對取自采樣電阻 RS1 上的電壓信號進(jìn)一步處理,有效濾除其中的無用高頻諧波信號,以 提高零磁通交直流檢測器測量精度。2022年有70%的動力電池回收后用于梯次利用,30%的動力電池用于再生利用。無錫開環(huán)電流傳感器生產(chǎn)廠家
國內(nèi)外密集出臺新型儲能政策,推動新型儲能技術(shù)發(fā)展及規(guī)?;瘧?yīng)用。濟南計量級電流傳感器發(fā)展現(xiàn)狀
配網(wǎng)用電流傳感器多用于電能計量, 其主要性能指標(biāo)為其交流計量誤差[60, 61]。實驗 時在全量程范圍進(jìn)行交流性能測試, 根據(jù)《測量用電流互感器檢定規(guī)程》,所研制的 500 A 交直流電流傳感器, 交流測試范圍為 0~600 A,實驗時直流電流源輸出為 0 ,直流繞 組斷開,通過調(diào)節(jié)升流器旋鈕調(diào)節(jié)一次側(cè)交流大小, 測試了正反行程 5%、20%、100% 、 120%額定電流下新型交直流傳感器比差角差。紅色曲線為 0.05 級交流電流互感器比差和角差誤差限值曲線, 黃色曲線為反行程交流比差和角差誤差曲線, 黑色曲線為正行程交流比差和角差誤差曲 線。濟南計量級電流傳感器發(fā)展現(xiàn)狀