目前設(shè)備狀態(tài)監(jiān)測(cè)及故障預(yù)警若干關(guān)鍵技術(shù)可歸納如下:(1)揭示設(shè)備運(yùn)行狀態(tài)機(jī)械動(dòng)態(tài)特性劣化演變規(guī)律。設(shè)備由非故障運(yùn)行狀態(tài)劣化為故障運(yùn)行狀態(tài),其機(jī)械動(dòng)態(tài)特性通常有一個(gè)發(fā)展演變過程(2)提取設(shè)備運(yùn)行狀態(tài)發(fā)展趨勢(shì)特征。在役設(shè)備往往具有復(fù)雜運(yùn)行狀態(tài),在長(zhǎng)歷程運(yùn)行中工況和負(fù)載等非故障因素會(huì)造成信號(hào)能量變化,故障趨勢(shì)信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進(jìn)而構(gòu)建預(yù)測(cè)模型。動(dòng)力裝備全壽命周期監(jiān)測(cè)診斷方面:實(shí)現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動(dòng)態(tài)自適應(yīng)監(jiān)測(cè)、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運(yùn)行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識(shí)的適應(yīng)性與可靠性,基于運(yùn)行過程信息反映裝備劣化趨勢(shì)與故障發(fā)展規(guī)律,來提高故障早期辨識(shí)能力?;谖锫?lián)網(wǎng)和網(wǎng)絡(luò)化監(jiān)測(cè)診斷將產(chǎn)品監(jiān)測(cè)診斷與運(yùn)行服務(wù)支持有機(jī)集成一體,在應(yīng)用中實(shí)現(xiàn)動(dòng)力裝備常見故障診斷準(zhǔn)確率達(dá)80%以上??蓱?yīng)用于風(fēng)力大電機(jī)、空壓機(jī)等大型動(dòng)力裝備的集群化診斷領(lǐng)域。提供了基于物聯(lián)網(wǎng)的動(dòng)力裝備全生命周期監(jiān)測(cè)與服務(wù)支持創(chuàng)新模式,提供了其生命周期的遠(yuǎn)程監(jiān)測(cè)診斷與維護(hù)等專業(yè)化服務(wù)。盈蓓德科技的客戶主要來自汽車、船舶等多個(gè)行業(yè)。上海專業(yè)監(jiān)測(cè)數(shù)據(jù)
在預(yù)防性維護(hù)的應(yīng)用中,振動(dòng)是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機(jī)械設(shè)備的所有故障中,振動(dòng)問題出現(xiàn)的概率比較高;另一方面,振動(dòng)信號(hào)包含了豐富的機(jī)械及運(yùn)行的狀態(tài)信息;第三,振動(dòng)信號(hào)易于拾取,便于在不影響機(jī)械運(yùn)行的情況下實(shí)行在線監(jiān)測(cè)和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護(hù)需要重點(diǎn)監(jiān)控振動(dòng)量變化。其預(yù)測(cè)性診斷技術(shù)對(duì)于制造業(yè)、風(fēng)電等的行業(yè)的運(yùn)維具有非常重大的意義。通過設(shè)備振動(dòng)等狀態(tài)的預(yù)測(cè)性維護(hù),可以及時(shí)發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對(duì)于一些不是因?yàn)樵O(shè)備問題而存在的固有振動(dòng),振動(dòng)強(qiáng)度不必要增加會(huì)對(duì)部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動(dòng)隔離技術(shù)來解決和干預(yù),有效抑制振動(dòng)和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。無錫發(fā)動(dòng)機(jī)監(jiān)測(cè)監(jiān)測(cè)結(jié)果的比較可以幫助我們?cè)u(píng)估不同營銷活動(dòng)的效果和效益。
隨著電力電子技術(shù)、自動(dòng)化控制技術(shù)的不斷發(fā)展,電機(jī)在工業(yè)生產(chǎn)以及家用電器中得到了應(yīng)用,在市場(chǎng)競(jìng)爭(zhēng)中正逐步顯示自己的優(yōu)勢(shì)。傳統(tǒng)的電機(jī)在線監(jiān)測(cè)裝置多采用電流表、電壓表、功率表等較為原始的儀表來進(jìn)行測(cè)量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測(cè)量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測(cè)試結(jié)果不準(zhǔn)確。有些場(chǎng)合需要進(jìn)行電機(jī)多種參數(shù)的監(jiān)測(cè),這樣就勢(shì)必會(huì)加大各種測(cè)量?jī)x器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測(cè)方法要求監(jiān)測(cè)人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測(cè)方法無法做定量分析,無法更加準(zhǔn)確、實(shí)時(shí)的掌握電機(jī)的運(yùn)行狀態(tài)和故障。
技術(shù)實(shí)現(xiàn)要素:本發(fā)明提出了一種電機(jī)在線監(jiān)測(cè)裝置和方法,通過對(duì)扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、輸入、輸出功率和效率進(jìn)行實(shí)時(shí)動(dòng)態(tài)的監(jiān)測(cè)以及對(duì)過電壓、過電流、過熱進(jìn)行報(bào)警停機(jī),解決現(xiàn)有技術(shù)中監(jiān)測(cè)參數(shù)不能定量分析以及無法更加準(zhǔn)確、實(shí)時(shí)的掌握電機(jī)運(yùn)行狀態(tài)和故障的技術(shù)問題。
隨著電力電子技術(shù)、自動(dòng)化控制技術(shù)的不斷發(fā)展,電機(jī)在工業(yè)生產(chǎn)以及家用電器中得到了的應(yīng)用,在市場(chǎng)競(jìng)爭(zhēng)中正逐步顯示自己的優(yōu)勢(shì)。傳統(tǒng)的電機(jī)在線監(jiān)測(cè)裝置多采用電流表、電壓表、功率表等較為原始的儀表來進(jìn)行測(cè)量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測(cè)量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測(cè)試結(jié)果不準(zhǔn)確。有些場(chǎng)合需要進(jìn)行電機(jī)多種參數(shù)的監(jiān)測(cè),這樣就勢(shì)必會(huì)加大各種測(cè)量?jī)x器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測(cè)方法要求監(jiān)測(cè)人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測(cè)方法無法做定量分析,無法更加準(zhǔn)確、實(shí)時(shí)的掌握電機(jī)的運(yùn)行狀態(tài)和故障。技術(shù)實(shí)現(xiàn)要素:本發(fā)明提出了一種電機(jī)在線監(jiān)測(cè)裝置和方法,通過對(duì)扭矩、轉(zhuǎn)速、各相電壓、溫度、輸入、輸出功率和效率進(jìn)行實(shí)時(shí)動(dòng)態(tài)的監(jiān)測(cè)以及對(duì)過電壓、過電流、過熱進(jìn)行報(bào)警停機(jī),解決現(xiàn)有技術(shù)中監(jiān)測(cè)參數(shù)不能定量分析以及無法更加準(zhǔn)確、實(shí)時(shí)的掌握電機(jī)運(yùn)行狀態(tài)和故障的技術(shù)問題。監(jiān)測(cè)工作需要關(guān)注消費(fèi)者的購買行為和偏好,以提高銷售效果。
預(yù)測(cè)性維護(hù)應(yīng)運(yùn)而生。其是以狀態(tài)為依據(jù)的維修,主要是對(duì)設(shè)備在運(yùn)行中產(chǎn)生的二次效應(yīng)(如振動(dòng)、噪聲、沖擊脈沖、油樣成分、溫度等)進(jìn)行連續(xù)在線的狀態(tài)監(jiān)測(cè)及數(shù)據(jù)分析,診斷并預(yù)測(cè)設(shè)備故障的發(fā)展趨勢(shì),提前制定預(yù)測(cè)性維護(hù)計(jì)劃并實(shí)施檢維修的行為。
總體來看,狀態(tài)監(jiān)測(cè)和故障診斷是判斷預(yù)測(cè)性維護(hù)是否合理的根本所在,數(shù)據(jù)狀態(tài)的連續(xù)監(jiān)測(cè)和遠(yuǎn)程傳輸上傳相對(duì)已經(jīng)比較成熟,而狀態(tài)預(yù)測(cè)和故障診斷主要還是依靠人工分析實(shí)現(xiàn),診斷分析人員通過趨勢(shì)?波形?頻譜等專業(yè)分析工具,結(jié)合傳動(dòng)結(jié)構(gòu)?機(jī)械部件參數(shù)等信息,實(shí)現(xiàn)設(shè)備故障的精細(xì)定位。其發(fā)展趨勢(shì)是將物聯(lián)網(wǎng)及人工智能技術(shù)引入狀態(tài)預(yù)測(cè)及故障的智能診斷,從而降低誤判概率,大幅提升診斷效率和準(zhǔn)確性。 預(yù)計(jì)到2025年,缺口在1.3~3.7萬人之間,這也反映出自動(dòng)駕駛行業(yè)發(fā)展的旺盛需求和競(jìng)爭(zhēng)激烈的現(xiàn)狀。無錫NVH監(jiān)測(cè)數(shù)據(jù)
工業(yè)監(jiān)測(cè)技術(shù)可以幫助企業(yè)保障員工安全和健康。上海專業(yè)監(jiān)測(cè)數(shù)據(jù)
柴油機(jī)狀態(tài)監(jiān)測(cè)與故障診斷系統(tǒng)是一種集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測(cè)、故障診斷為一體的多任務(wù)處理系統(tǒng), 可實(shí)現(xiàn)柴油機(jī)監(jiān)測(cè)、保護(hù)、分析、診斷等功能。包括數(shù)據(jù)采集與工況監(jiān)測(cè)、活塞缸套磨損監(jiān)測(cè)分析、主軸承磨損狀態(tài)監(jiān)測(cè)分析、氣閥間隙異常監(jiān)測(cè)分析和瞬時(shí)轉(zhuǎn)速監(jiān)測(cè)分析等各種功能。信號(hào)分析、特征提取及診斷原理是每個(gè)監(jiān)測(cè)診斷子功能的部分, 各子功能都有相應(yīng)的信號(hào)分析與特征提取方法, 包括信號(hào)預(yù)處理、時(shí)域、頻域分析、小波分析等, 自動(dòng)形成反映柴油機(jī)運(yùn)行狀態(tài)的特征量, 為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗(yàn)特征參量的有效性、建立故障標(biāo)準(zhǔn)征兆群, 并運(yùn)用模糊貼近度來實(shí)施故障類型的診斷識(shí)別。上海專業(yè)監(jiān)測(cè)數(shù)據(jù)