故障診斷可以根據(jù)狀態(tài)監(jiān)測(cè)系統(tǒng)提供的信息來(lái)查明導(dǎo)致系統(tǒng)某種功能失調(diào)的原因或性質(zhì),判斷劣化發(fā)生的部位或部件,以及預(yù)測(cè)狀態(tài)劣化的發(fā)展趨勢(shì)等。電機(jī)故障診斷基本方法主要有:1、電氣分析法,通過(guò)頻譜等信號(hào)分析方法對(duì)負(fù)載電流的波形進(jìn)行檢測(cè)從而診斷出電機(jī)設(shè)備故障的原因和程度;檢測(cè)局部放電信號(hào);對(duì)比外部施加脈沖信號(hào)的響應(yīng)和標(biāo)準(zhǔn)響應(yīng)等;2、絕緣診斷法,利用各種電氣試驗(yàn)裝置和診斷技術(shù)對(duì)電機(jī)設(shè)備的絕緣結(jié)構(gòu)和參數(shù)、工作性能是否存在缺陷做出判斷,并對(duì)絕緣壽命做出預(yù)測(cè);3、溫度檢測(cè)方法,采用各種溫度測(cè)量方法對(duì)電機(jī)設(shè)備各個(gè)部位的溫升進(jìn)行監(jiān)測(cè),電機(jī)的溫升與各種故障現(xiàn)象相關(guān);4、振動(dòng)與噪聲診斷法,通過(guò)對(duì)電機(jī)設(shè)備振動(dòng)與噪聲的檢測(cè),并對(duì)獲取的信號(hào)進(jìn)行處理,診斷出電機(jī)產(chǎn)生故障的原因和部位,尤其是對(duì)機(jī)械上的損壞診斷特別有效。5、化學(xué)診斷的方法,可以檢測(cè)到絕緣材料和潤(rùn)滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過(guò)對(duì)比其中一些化學(xué)成分的含量,可以判斷相關(guān)部位元件的破壞程度。工業(yè)人員安全的監(jiān)測(cè)檢測(cè)是保障工人生命安全的必要措施,可以預(yù)防事故的發(fā)生。杭州設(shè)備監(jiān)測(cè)技術(shù)
隨著電力電子技術(shù)、自動(dòng)化控制技術(shù)的不斷發(fā)展,電機(jī)在工業(yè)生產(chǎn)以及家用電器中得到了應(yīng)用,在市場(chǎng)競(jìng)爭(zhēng)中正逐步顯示自己的優(yōu)勢(shì)。傳統(tǒng)的電機(jī)在線監(jiān)測(cè)裝置多采用電流表、電壓表、功率表等較為原始的儀表來(lái)進(jìn)行測(cè)量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測(cè)量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測(cè)試結(jié)果不準(zhǔn)確。有些場(chǎng)合需要進(jìn)行電機(jī)多種參數(shù)的監(jiān)測(cè),這樣就勢(shì)必會(huì)加大各種測(cè)量?jī)x器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測(cè)方法要求監(jiān)測(cè)人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測(cè)方法無(wú)法做定量分析,無(wú)法更加準(zhǔn)確、實(shí)時(shí)的掌握電機(jī)的運(yùn)行狀態(tài)和故障。技術(shù)實(shí)現(xiàn)要素:本發(fā)明提出了一種電機(jī)在線監(jiān)測(cè)裝置和方法,通過(guò)對(duì)扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、功率和效率進(jìn)行實(shí)時(shí)動(dòng)態(tài)的監(jiān)測(cè)以及對(duì)過(guò)電壓、過(guò)電流、過(guò)熱進(jìn)行報(bào)警停機(jī),解決現(xiàn)有技術(shù)中監(jiān)測(cè)參數(shù)不能定量分析以及無(wú)法更加準(zhǔn)確、實(shí)時(shí)的掌握電機(jī)運(yùn)行狀態(tài)和故障的技術(shù)問(wèn)題。南通穩(wěn)定監(jiān)測(cè)應(yīng)用監(jiān)測(cè)結(jié)果的反饋可以幫助我們改進(jìn)產(chǎn)品和服務(wù)的質(zhì)量。
作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對(duì)于終端用來(lái)說(shuō),關(guān)于電機(jī)維護(hù)的主要是電氣班組的設(shè)備工程師、電機(jī)維護(hù)工程師、電機(jī)檢修人員等;對(duì)于電機(jī)廠家以及電機(jī)經(jīng)銷(xiāo)商來(lái)說(shuō),主要是電機(jī)售后服務(wù)工程師、電機(jī)銷(xiāo)售人員,會(huì)涉及到電機(jī)的運(yùn)行維護(hù);險(xiǎn)此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號(hào)稱可以實(shí)現(xiàn)電機(jī)的預(yù)測(cè)性維護(hù),但問(wèn)題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測(cè)需要振動(dòng)、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護(hù)成本高昂。2)技術(shù)成本高。工業(yè)場(chǎng)景設(shè)備類型多,運(yùn)行工況復(fù)雜,預(yù)測(cè)性維護(hù)算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機(jī)理、機(jī)器學(xué)習(xí),技術(shù)要求很高。3)時(shí)間成本高。預(yù)測(cè)性維護(hù)要實(shí)現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個(gè)漫長(zhǎng)的過(guò)程。電機(jī)智能運(yùn)維,雖然被各大宣傳媒體提得很多,但還遠(yuǎn)遠(yuǎn)未到落地很好乃至普及的程度,不論是預(yù)測(cè)性維護(hù)的預(yù)測(cè)效果,還是電機(jī)的智能運(yùn)維的市場(chǎng)推廣以及市場(chǎng)接受程度,對(duì)于電機(jī)運(yùn)維來(lái)說(shuō),都還有很遠(yuǎn)的一段距離!
工業(yè)設(shè)備的預(yù)測(cè)性維護(hù)的市場(chǎng)需求顯而易見(jiàn),但是預(yù)防性維護(hù)想要產(chǎn)生業(yè)務(wù)、真正大規(guī)模發(fā)展卻是遇到了兩個(gè)難題。首先項(xiàng)目實(shí)施成本過(guò)高,硬件設(shè)備大多依賴進(jìn)口。比如數(shù)采傳感器、設(shè)備等。這導(dǎo)致很多企業(yè)在考慮投入產(chǎn)出比時(shí)比較猶豫。其次是技術(shù)需要突破,目前大多數(shù)供應(yīng)商只實(shí)現(xiàn)了設(shè)備狀態(tài)的監(jiān)視,真正能實(shí)現(xiàn)故障準(zhǔn)確預(yù)測(cè)的落地案例寥寥無(wú)幾。供應(yīng)商技術(shù)和能力還需要不斷升級(jí)。預(yù)防性維護(hù)要想實(shí)現(xiàn)更好的應(yīng)用,要在以下方面實(shí)現(xiàn)突破。實(shí)現(xiàn)基于預(yù)測(cè)的維護(hù),提升故障診斷及預(yù)測(cè)的準(zhǔn)確率提高軟硬件產(chǎn)品國(guó)產(chǎn)化率,降低實(shí)施成本。遠(yuǎn)程終端廣泛應(yīng)用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設(shè)備狀態(tài)的在線監(jiān)測(cè),能夠進(jìn)行前端數(shù)據(jù)清洗和邊緣計(jì)算,通過(guò)對(duì)歷史數(shù)據(jù)趨勢(shì)分析、設(shè)備數(shù)據(jù)機(jī)理分析、統(tǒng)計(jì)分析等大數(shù)據(jù)分析,對(duì)設(shè)備的狀態(tài)做出有效可靠的健康狀態(tài)評(píng)判,從而切實(shí)有效的提高設(shè)備的維護(hù)能力。遠(yuǎn)程終端可實(shí)現(xiàn)對(duì)電源電壓、設(shè)備狀態(tài)的自檢,分析計(jì)量故障等信息,及時(shí)發(fā)現(xiàn)計(jì)量異?!,F(xiàn)場(chǎng)監(jiān)測(cè)箱開(kāi)門(mén)、斷電、設(shè)備運(yùn)行等異常信息也能夠主動(dòng)發(fā)送報(bào)警信息到監(jiān)測(cè)中心,實(shí)現(xiàn)設(shè)備在線監(jiān)診的準(zhǔn)確性、完整性、及時(shí)性和可靠性。設(shè)備狀態(tài)的監(jiān)診很有必要。監(jiān)測(cè)工作需要關(guān)注新產(chǎn)品的研發(fā)和上市情況,以了解市場(chǎng)的反應(yīng)和需求。
低信噪比微弱信號(hào)特征早期故障的信號(hào)處理。早期故障信息具有明顯的低信噪比微弱信號(hào)的特征,為實(shí)現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測(cè)及信息融合,非平穩(wěn)及非線性信號(hào)處理,故障征兆量和損傷征兆量信號(hào)分析,噪聲規(guī)律與特點(diǎn)分析,以及相關(guān)數(shù)據(jù)挖掘、盲源分離、粗糙集等方法。故障預(yù)測(cè)模型構(gòu)建。構(gòu)建基于智能信息系統(tǒng)的設(shè)備早期故障預(yù)測(cè)模型,這類模型大致有兩個(gè)途徑,分別是物理信息預(yù)測(cè)模型以及數(shù)據(jù)信息預(yù)測(cè)模型,或構(gòu)建這兩類預(yù)測(cè)模型相融合的預(yù)測(cè)模型。運(yùn)行狀態(tài)劣化的相關(guān)評(píng)價(jià)參數(shù)、模式及準(zhǔn)則。如表征設(shè)備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評(píng)價(jià)準(zhǔn)則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評(píng)估依據(jù)及判據(jù)等。物聯(lián)網(wǎng)聲學(xué)監(jiān)控系統(tǒng),輔以其他設(shè)備參數(shù),通過(guò)物聯(lián)網(wǎng)技術(shù)實(shí)現(xiàn)設(shè)備狀態(tài)的遠(yuǎn)程感知,基于AI神經(jīng)網(wǎng)絡(luò)技術(shù),計(jì)算并提取設(shè)備音頻特征,從而實(shí)現(xiàn)設(shè)備運(yùn)行狀態(tài)實(shí)時(shí)評(píng)估與故障的早期識(shí)別。幫助企業(yè)用戶提升生產(chǎn)效率,保證生產(chǎn)安全,優(yōu)化生產(chǎn)決策。盈蓓德科技的企業(yè)文化強(qiáng)調(diào)創(chuàng)新、務(wù)實(shí)、開(kāi)放和多元。無(wú)錫變速箱監(jiān)測(cè)方案
公司始終保持對(duì)外敏銳且謙虛的態(tài)度,聽(tīng)得進(jìn)意見(jiàn)。杭州設(shè)備監(jiān)測(cè)技術(shù)
基于人工神經(jīng)網(wǎng)絡(luò)的診斷方法簡(jiǎn)單處理單元連接而成的復(fù)雜的非線性系統(tǒng),具有學(xué)習(xí)能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問(wèn)題,不僅能進(jìn)行復(fù)雜故障診斷模式的識(shí)別,還能進(jìn)行故障嚴(yán)重性評(píng)估和故障預(yù)測(cè),由于ANN能自動(dòng)獲取診斷知識(shí),使診斷系統(tǒng)具有自適應(yīng)能力?;诩尚椭悄芟到y(tǒng)的診斷方法隨著電機(jī)設(shè)備系統(tǒng)越來(lái)越復(fù)雜,依靠單一的故障診斷技術(shù)已難滿足復(fù)雜電機(jī)設(shè)備的故障診斷要求,因此上述各種診斷技術(shù)集成起來(lái)形成的集成智能診斷系統(tǒng)成為當(dāng)前電機(jī)設(shè)備故障診斷研究的熱點(diǎn)。主要的集成技術(shù)有:基于規(guī)則的系統(tǒng)與ANN的結(jié)合,模糊邏輯與ANN的結(jié)合,混沌理論與ANN的結(jié)合,模糊神經(jīng)網(wǎng)絡(luò)與系統(tǒng)的結(jié)合。杭州設(shè)備監(jiān)測(cè)技術(shù)