預(yù)測性維護(hù)應(yīng)運(yùn)而生。其是以狀態(tài)為依據(jù)的維修,主要是對設(shè)備在運(yùn)行中產(chǎn)生的二次效應(yīng)(如振動、噪聲、沖擊脈沖、油樣成分、溫度等)進(jìn)行連續(xù)在線的狀態(tài)監(jiān)測及數(shù)據(jù)分析,診斷并預(yù)測設(shè)備故障的發(fā)展趨勢,提前制定預(yù)測性維護(hù)計劃并實施檢維修的行為。
總體來看,狀態(tài)監(jiān)測和故障診斷是判斷預(yù)測性維護(hù)是否合理的根本所在,數(shù)據(jù)狀態(tài)的連續(xù)監(jiān)測和遠(yuǎn)程傳輸上傳相對已經(jīng)比較成熟,而狀態(tài)預(yù)測和故障診斷主要還是依靠人工分析實現(xiàn),診斷分析人員通過趨勢?波形?頻譜等專業(yè)分析工具,結(jié)合傳動結(jié)構(gòu)?機(jī)械部件參數(shù)等信息,實現(xiàn)設(shè)備故障的精細(xì)定位。其發(fā)展趨勢是將物聯(lián)網(wǎng)及人工智能技術(shù)引入狀態(tài)預(yù)測及故障的智能診斷,從而降低誤判概率,大幅提升診斷效率和準(zhǔn)確性。 工業(yè)廢氣排放的監(jiān)測檢測對于環(huán)境保護(hù)至關(guān)重要,只有達(dá)到國家標(biāo)準(zhǔn)才能減少對環(huán)境的污染。紹興耐久監(jiān)測系統(tǒng)供應(yīng)商
故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計概率、信號處理、機(jī)器學(xué)習(xí)和統(tǒng)計學(xué)習(xí)等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性、可靠性。故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計概率、信號處理、機(jī)器學(xué)習(xí)和統(tǒng)計學(xué)習(xí)等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。近年來我們提出的標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及準(zhǔn)算數(shù)均值比數(shù)學(xué)框架指引了稀疏測度構(gòu)造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價性能的稀疏測度?;跇?biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機(jī)器學(xué)習(xí)算法,可以利用模型權(quán)重來實時確認(rèn)故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機(jī)器學(xué)習(xí)只能輸出狀態(tài),而無法提供故障特征來確認(rèn)輸出狀態(tài)的難題。無錫設(shè)備監(jiān)測公司工業(yè)產(chǎn)品質(zhì)量的監(jiān)測檢測是保證產(chǎn)品符合標(biāo)準(zhǔn)要求的重要手段,可以提高產(chǎn)品的競爭力和市場信譽(yù)。
作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對于終端用來說,關(guān)于電機(jī)維護(hù)的主要是電氣班組的設(shè)備工程師、電機(jī)維護(hù)工程師、電機(jī)檢修人員等;對于電機(jī)廠家以及電機(jī)經(jīng)銷商來說,主要是電機(jī)售后服務(wù)工程師、電機(jī)銷售人員,會涉及到電機(jī)的運(yùn)行維護(hù);險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實現(xiàn)電機(jī)的預(yù)測性維護(hù),但問題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護(hù)成本高昂。2)技術(shù)成本高。工業(yè)場景設(shè)備類型多,運(yùn)行工況復(fù)雜,預(yù)測性維護(hù)算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機(jī)理、機(jī)器學(xué)習(xí),技術(shù)要求很高。3)時間成本高。預(yù)測性維護(hù)要實現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。電機(jī)智能運(yùn)維,雖然被各大宣傳媒體提得很多,但還遠(yuǎn)遠(yuǎn)未到落地很好乃至普及的程度,不論是預(yù)測性維護(hù)的預(yù)測效果,還是電機(jī)的智能運(yùn)維的市場推廣以及市場接受程度,對于電機(jī)運(yùn)維來說,都還有很遠(yuǎn)的一段距離!
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點分析,以及相關(guān)數(shù)據(jù)挖掘、盲源分離、粗糙集等方法。故障預(yù)測模型構(gòu)建。構(gòu)建基于智能信息系統(tǒng)的設(shè)備早期故障預(yù)測模型,這類模型大致有兩個途徑,分別是物理信息預(yù)測模型以及數(shù)據(jù)信息預(yù)測模型,或構(gòu)建這兩類預(yù)測模型相融合的預(yù)測模型。運(yùn)行狀態(tài)劣化的相關(guān)評價參數(shù)、模式及準(zhǔn)則。如表征設(shè)備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評價準(zhǔn)則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據(jù)及判據(jù)等。物聯(lián)網(wǎng)聲學(xué)監(jiān)控系統(tǒng),輔以其他設(shè)備參數(shù),通過物聯(lián)網(wǎng)技術(shù)實現(xiàn)設(shè)備狀態(tài)的遠(yuǎn)程感知,基于AI神經(jīng)網(wǎng)絡(luò)技術(shù),計算并提取設(shè)備音頻特征,從而實現(xiàn)設(shè)備運(yùn)行狀態(tài)實時評估與故障的早期識別。幫助企業(yè)用戶提升生產(chǎn)效率,保證生產(chǎn)安全,優(yōu)化生產(chǎn)決策。監(jiān)測結(jié)果的對比可以幫助我們評估不同渠道的效果和效益。
電機(jī)馬達(dá)監(jiān)控系統(tǒng)適用于石油、化工、電力、煤炭、冶金、造紙等行業(yè),可以實時對低壓電動機(jī)的運(yùn)行狀態(tài)進(jìn)行監(jiān)測,對電機(jī)各類故障進(jìn)行監(jiān)測并存儲故障信息,可以生成各類實時曲線(電壓曲線、電流曲線等),為電機(jī)節(jié)能提供依據(jù),并可實現(xiàn)電機(jī)節(jié)能管理。系統(tǒng)特點:1、實時監(jiān)測電機(jī)回路石化、電力、水泥等電機(jī)用量大戶,需要對電機(jī)進(jìn)行實時監(jiān)測,監(jiān)測內(nèi)容包括電機(jī)的電流、電壓、電能、頻率、電機(jī)狀態(tài)(起動、停止、報警、故障)等。在要求較高的場所還要對工藝參數(shù)進(jìn)行監(jiān)測,例如溫度、壓力等。本系統(tǒng)不僅可以監(jiān)測電機(jī)電壓、電流還能做能耗統(tǒng)計,工藝參數(shù)監(jiān)測,可以大幅提高企業(yè)自動化程度。2、集中監(jiān)控,利于節(jié)能馬達(dá)監(jiān)控系統(tǒng)對用電大戶電機(jī)進(jìn)行實時能耗監(jiān)測,監(jiān)測到的數(shù)據(jù)可以作為節(jié)能依據(jù),并可通過系統(tǒng)進(jìn)行節(jié)能控制,利于電機(jī)節(jié)能應(yīng)用。3、提高自動化水平.電機(jī)監(jiān)控系統(tǒng)是應(yīng)用電力自動化技術(shù)、計算機(jī)技術(shù)和信息傳輸技術(shù),集保護(hù)、監(jiān)測、控制、通信等功能于一體的綜合系統(tǒng),監(jiān)測結(jié)果的分析可以幫助我們了解市場的競爭態(tài)勢和市場份額。南京電力監(jiān)測
監(jiān)測工作需要關(guān)注消費(fèi)者的購買行為和偏好,以提高銷售效果。紹興耐久監(jiān)測系統(tǒng)供應(yīng)商
目前設(shè)備狀態(tài)監(jiān)測及故障預(yù)警若干關(guān)鍵技術(shù)可歸納如下:(1)揭示設(shè)備運(yùn)行狀態(tài)機(jī)械動態(tài)特性劣化演變規(guī)律。設(shè)備由非故障運(yùn)行狀態(tài)劣化為故障運(yùn)行狀態(tài),其機(jī)械動態(tài)特性通常有一個發(fā)展演變過程(2)提取設(shè)備運(yùn)行狀態(tài)發(fā)展趨勢特征。在役設(shè)備往往具有復(fù)雜運(yùn)行狀態(tài),在長歷程運(yùn)行中工況和負(fù)載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進(jìn)而構(gòu)建預(yù)測模型。動力裝備全壽命周期監(jiān)測診斷方面:實現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動態(tài)自適應(yīng)監(jiān)測、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運(yùn)行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識的適應(yīng)性與可靠性,基于運(yùn)行過程信息反映裝備劣化趨勢與故障發(fā)展規(guī)律,來提高故障早期辨識能力?;谖锫?lián)網(wǎng)和網(wǎng)絡(luò)化監(jiān)測診斷將產(chǎn)品監(jiān)測診斷與運(yùn)行服務(wù)支持有機(jī)集成一體,在應(yīng)用中實現(xiàn)動力裝備常見故障診斷準(zhǔn)確率達(dá)80%以上??蓱?yīng)用于風(fēng)力大電機(jī)、空壓機(jī)等大型動力裝備的集群化診斷領(lǐng)域。提供了基于物聯(lián)網(wǎng)的動力裝備全生命周期監(jiān)測與服務(wù)支持創(chuàng)新模式,提供了其生命周期的遠(yuǎn)程監(jiān)測診斷與維護(hù)等專業(yè)化服務(wù)。紹興耐久監(jiān)測系統(tǒng)供應(yīng)商