柴油機狀態(tài)監(jiān)測與故障診斷系統(tǒng)是一個集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測、故障診斷為一體的多任務處理系統(tǒng),可實現(xiàn)柴油機監(jiān)測、保護、分析、診斷等功能。包括數(shù)據(jù)采集與工況監(jiān)測、活塞缸套磨損監(jiān)測分析、主軸承磨損狀態(tài)監(jiān)測分析、氣閥間隙異常監(jiān)測分析和瞬時轉(zhuǎn)速監(jiān)測分析等各種功能。信號分析、特征提取及診斷原理是每個監(jiān)測診斷子功能的**部分,各子功能都有相應的信號分析與特征提取方法,包括信號預處理、時域、頻域分析、小波分析等,自動形成反映柴油機運行狀態(tài)的特征量,為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗特征參量的有效性、建立故障標準征兆群,并運用模糊貼近度來實施故障類型的診斷識別。基于人工神經(jīng)網(wǎng)絡的診斷方法簡單處理單元連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應能力。盈蓓德科技順應行業(yè)發(fā)展方向,搭建一套基于旋轉(zhuǎn)類設備溫度,振動狀態(tài)監(jiān)測、故障判斷和預測性維護系統(tǒng)。寧波動力設備監(jiān)測介紹
刀具監(jiān)測主要采用人工、離線和在線檢測三種策略。人工檢測是指工人在加工過程中可以憑經(jīng)驗檢查刀具的狀態(tài);離線檢測是在加工前專門對刀具進行檢測,預測其壽命,看是否能勝任當前的加工;在線檢測又稱實時檢測、監(jiān)測,是在加工過程中對刀具進行實時檢測,并根據(jù)檢測結果做出相應的處理。目前刀具檢測的算法有很多,有的是利用理論計算刀具上應力的變化來判斷刀具的損傷.有的是利用時間序列分析來檢測刀具,有的是利用神經(jīng)網(wǎng)絡技術來檢測刀具。還有的是利用小波變換理論和神經(jīng)網(wǎng)絡技術來檢測刀具,但都是以理論為主??紤]到刀具的塑性損傷在數(shù)控加工中很少發(fā)生,磨損對數(shù)控加工的安全性影響很小,并且可以通過離線檢測進行加工,通過在線檢測,可以判斷微裂紋在當前載荷條件下是否會擴展。如果有可能擴大,我們認為載荷是危險的,通過減少刀具的進給量來減少刀具上的載荷,以保證刀具的安全性。溫州狀態(tài)監(jiān)測方案測量電機關鍵參數(shù),利用AI融合工業(yè)機理算法,構建各類故障模型庫,實現(xiàn)邊緣側數(shù)據(jù)實時分析和決策。
電機狀態(tài)監(jiān)測和故障診斷技術是一種了解和掌握電機在使用過程中的狀態(tài),確定其整體或局部正?;虍惓#缙诎l(fā)現(xiàn)故障及其原因,并能預報故障發(fā)展趨勢的技術,電機狀態(tài)監(jiān)測與故障診斷技術包括識別電機狀態(tài)監(jiān)測和預測發(fā)展趨勢兩方面。設備狀態(tài)是指設備運行的工況,由設備運行過程中的各種性能參數(shù)以及設備運行過程中產(chǎn)生的二次效應參數(shù)和產(chǎn)品質(zhì)量指標參數(shù)來描述。設備狀態(tài)的類型包括:正常、異常和故障三種。設備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進行分析處理,根據(jù)分析處理結果判定設備狀態(tài)。對設備進行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結合設備的歷史狀況和運行條件,弄清設備的客觀狀態(tài),獲取設備性能發(fā)展的趨勢規(guī)律,為設備的性能評價、合理使用、安全運行、故障診斷及設備自動控制打下基礎。電機故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機設備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換。
基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設備在線監(jiān)測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準確性、微處理器的速度、A/D轉(zhuǎn)換的分辨率與轉(zhuǎn)換速度等硬件條件的限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機設備所發(fā)生的故障類型。電機智能監(jiān)測和運維,其預測效果和工程造價還未達到市場接受程度。
工業(yè)設備的預測性維護的市場需求顯而易見,但是預防性維護想要產(chǎn)生業(yè)務、真正大規(guī)模發(fā)展卻是遇到了兩個難題。首先項目實施成本過高,硬件設備大多依賴進口。比如數(shù)采傳感器、設備等。這導致很多企業(yè)在考慮投入產(chǎn)出比時比較猶豫。其次是技術需要突破,目前大多數(shù)供應商只實現(xiàn)了設備狀態(tài)的監(jiān)視,真正能實現(xiàn)故障準確預測的落地案例寥寥無幾。供應商技術和能力還需要不斷升級。預防性維護要想實現(xiàn)更好的應用,要在以下方面實現(xiàn)突破。實現(xiàn)基于預測的維護,提升故障診斷及預測的準確率提高軟硬件產(chǎn)品國產(chǎn)化率,降低實施成本。電機的監(jiān)測和故障預判系統(tǒng)助力實現(xiàn)工業(yè)設備數(shù)智化管理和預測性維護。南通旋轉(zhuǎn)機械監(jiān)測價格
設備振動情況信息量豐富,振動測試系統(tǒng)應用于設備狀態(tài)監(jiān)測,在設備預知維修中起到了重要的作用。寧波動力設備監(jiān)測介紹
傳統(tǒng)維護模式中的故障后維護與定期維護將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計算、機器學習與傳感器等技術的成熟,預測性維護技術應運而生。以各類如電機、軸承等設備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測階段,來實現(xiàn)查看設備是否需要維護、怎么安排維護時間來減少計劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個網(wǎng)絡,將數(shù)據(jù)回傳至管理中心,來實現(xiàn)電機設備的預測性維護。電動機是機械加工中不可或缺的必備工具,電動機在運轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動機運行安全,對電動機運行狀態(tài)進行在線監(jiān)測尤為重要。以三相異步電動機為研究對象,采用傳感器獲取電動機運行中的重要參數(shù)(振動、噪聲、轉(zhuǎn)速及溫度等),由時/頻域分析及能量分析等方法提取電動機運行特征量,構成特征向量,采用BP神經(jīng)網(wǎng)絡訓練的方法建立狀態(tài)識別模型,通過BP神經(jīng)網(wǎng)絡模式識別方法,判斷電動機運行的狀態(tài),在此基礎上,利用LabVIEW軟件構建可視化監(jiān)測系統(tǒng),將電動機運行參數(shù)及狀態(tài)實時顯示在可視化界面中,完成在線智能監(jiān)測。寧波動力設備監(jiān)測介紹