電機狀態(tài)監(jiān)測和振動分析提供加速度計選擇的建議。這些建議基于直流和非同步交流電機的常見故障。這些常見故障可通過振動分析檢測出來,包括機械和電氣故障。重點是傳感器的頻率范圍及其安裝方法,以便可靠地檢測這些故障。例如,考慮以幾百赫茲的周期性頻率(稱為故障頻率)發(fā)生的撞擊事件,但每個事件的能量可從起始點帶走,頻率在低至千赫范圍內(nèi)。因此,用于檢測撞擊、摩擦和凹槽等事件的傳感器應在幾百赫茲到20千赫的寬頻范圍內(nèi)響應。對于傳統(tǒng)的機械故障,如平衡和對準,頻率范圍從約0.2倍的運行速度到50-60倍的運行速度是足夠的。電氣故障需要機械故障所需的低頻和高頻段。
電機會同時出現(xiàn)機械和電氣故障,這會導致振動。只要安裝的振動傳感器具有足夠的帶寬和靈敏度,就可以檢測到這些故障。機械故障伴隨著沖擊、摩擦和疲勞,會產(chǎn)生比電氣故障頻率更***的振動,但凹槽除外。凹槽產(chǎn)生的振動頻率與摩擦頻率大致相同。如果傳感器的帶寬和安裝方法足以檢測機械故障,那么它們也將檢測電氣故障。 大型旋轉(zhuǎn)機械振動狀態(tài)在線監(jiān)測系統(tǒng)監(jiān)測對象涵蓋汽輪機、燃氣輪機、發(fā)電機、泵群、風機等大型旋轉(zhuǎn)設備。南京設備監(jiān)測控制策略
任何設備在故障發(fā)生之前都會出現(xiàn)一些異?,F(xiàn)象或癥狀,如振動偏大,有異常噪音等。持續(xù)狀態(tài)監(jiān)測在預測性維護實踐中起著重要作用,而關鍵的監(jiān)測參數(shù)是振動。設備振動揭示了對多個組件問題的重要見解,這些問題可能會降低流程質(zhì)量并**終導致生產(chǎn)停工。通過油溫升高可能是由于軸承運行狀態(tài)異常,也可能是由于室溫高、散熱慢、潤滑油枯度偏高或運行時間較長等原因。因此,在判斷時可能出現(xiàn)兩類決策錯誤;一是把實際處于異常狀態(tài)的機器誤認為正常狀態(tài),二是把實際處于正常狀態(tài)的機器錯認為異常狀態(tài)。如果同時用幾個特征,如油溫.潤滑油分析和噪聲來監(jiān)視機器主軸承的運行狀態(tài),判斷就較為可靠。由此可見,正確的識別理論是十分重要的。常州降噪監(jiān)測技術(shù)β-Star監(jiān)測系統(tǒng)是盈蓓德智能科技有限公司的產(chǎn)品,為大型電機提供數(shù)據(jù)監(jiān)測和故障預判服務。
動力裝備全壽命周期監(jiān)測診斷方面:實現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動態(tài)自適應監(jiān)測、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發(fā)展規(guī)律,來提高故障早期辨識能力。動力裝備全生命周期性能優(yōu)化服務方面:提供了轉(zhuǎn)子全息動平衡快速響應與服務支持、以全息譜為**的失衡故障確診、動力裝備轉(zhuǎn)子和軸系平衡配重方案優(yōu)化。基于物聯(lián)網(wǎng)和網(wǎng)絡化監(jiān)測診斷將產(chǎn)品監(jiān)測診斷與運行服務支持有機集成一體,在應用中實現(xiàn)動力裝備常見故障診斷準確率達80%以上??蓱糜陲L力大電機、空壓機、氮壓機等大型動力裝備的集群化診斷領域。提供了基于物聯(lián)網(wǎng)的動力裝備全生命周期監(jiān)測與服務支持創(chuàng)新模式,提供了其生命周期的遠程監(jiān)測診斷與維護等專業(yè)化服務。
基于人工神經(jīng)網(wǎng)絡的診斷方法簡單處理單元***連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應能力?;诩尚椭悄芟到y(tǒng)的診斷方法隨著電機設備系統(tǒng)越來越復雜,依靠單一的故障診斷技術(shù)已難滿足復雜電機設備的故障診斷要求,因此上述各種診斷技術(shù)集成起來形成的集成智能診斷系統(tǒng)成為當前電機設備故障診斷研究的熱點。主要的集成技術(shù)有:基于規(guī)則的**系統(tǒng)與ANN的結(jié)合,模糊邏輯與ANN的結(jié)合,混沌理論與ANN的結(jié)合,模糊神經(jīng)網(wǎng)絡與**系統(tǒng)的結(jié)合。人工智能和深度學習技術(shù)已在滾動軸承故障監(jiān)測和診斷領域取得了成功應用。
遠程終端廣泛應用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設備狀態(tài)的在線監(jiān)測,能夠進行前端數(shù)據(jù)清洗和邊緣計算,通過對歷史數(shù)據(jù)趨勢分析、設備數(shù)據(jù)機理分析、統(tǒng)計分析等大數(shù)據(jù)分析,對設備的狀態(tài)做出有效可靠的健康狀態(tài)評判,從而切實有效的提高設備的維護能力。遠程終端可實現(xiàn)對電源電壓、設備狀態(tài)的自檢,分析計量故障等信息,及時發(fā)現(xiàn)計量異常?,F(xiàn)場監(jiān)測箱開門、斷電、設備運行等異常信息也能夠主動發(fā)送報警信息到監(jiān)測中心,實現(xiàn)設備在線監(jiān)診的準確性、完整性、及時性和可靠性。測量電機關鍵參數(shù),利用AI融合工業(yè)機理算法,構(gòu)建故障模型庫,實現(xiàn)邊緣側(cè)數(shù)據(jù)實時分析和決策。常州降噪監(jiān)測技術(shù)
電動機的狀態(tài)監(jiān)測和故障診斷技術(shù)是設備維修及預防性維護的前提。南京設備監(jiān)測控制策略
智能振動噪聲監(jiān)診系統(tǒng),針對某型設備,通過機理模型分析設計出相應的傳感策略,獲取聲音、振動、壓力等多模態(tài)多維信號,隨后利用數(shù)據(jù)凈化、自適應分割等信號處理技術(shù),完成有效數(shù)據(jù)轉(zhuǎn)換。根據(jù)用戶定制需求和已有的**知識建立診斷知識庫,通過以太網(wǎng)將數(shù)據(jù)和知識庫傳遞給服務器完成深度學習,實現(xiàn)異常檢測、故障分類和異常定位,并給出設備的改進建議;同時,該產(chǎn)品也提供離線模式,可讓用戶利用既有的知識庫直接進行故障判斷,快速解決共性問題。該產(chǎn)品的技術(shù)特點是從機理模型出發(fā),有機結(jié)合深度學習的數(shù)據(jù)挖掘優(yōu)勢,形成真正可依賴的人工智能。南京設備監(jiān)測控制策略
上海盈蓓德智能科技有限公司成立于2019-01-02,同時啟動了以盈蓓德,西門子為主的智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)產(chǎn)業(yè)布局。旗下盈蓓德,西門子在電工電氣行業(yè)擁有一定的地位,品牌價值持續(xù)增長,有望成為行業(yè)中的佼佼者。我們在發(fā)展業(yè)務的同時,進一步推動了品牌價值完善。隨著業(yè)務能力的增長,以及品牌價值的提升,也逐漸形成電工電氣綜合一體化能力。上海盈蓓德智能科技有限公司業(yè)務范圍涉及從事智能科技、電子科技、計算機科技領域內(nèi)的技術(shù)開發(fā)、技術(shù)服務、技術(shù)咨詢、技術(shù)轉(zhuǎn)讓,計算機網(wǎng)絡工程,計算機硬件開發(fā),電子產(chǎn)品、計算機軟硬件、辦公設備、機械設備(除特種設備)銷售。【依法須經(jīng)批準的項目,經(jīng)相關部門批準后方可開展經(jīng)營活動】等多個環(huán)節(jié),在國內(nèi)電工電氣行業(yè)擁有綜合優(yōu)勢。在智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)等領域完成了眾多可靠項目。