常見(jiàn)的設(shè)備監(jiān)測(cè)數(shù)據(jù)包含以下幾類:1.運(yùn)行數(shù)據(jù):包括設(shè)備的運(yùn)轉(zhuǎn)時(shí)間、運(yùn)轉(zhuǎn)速度、負(fù)載情況、溫度、壓力等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的運(yùn)行狀態(tài)和性能表現(xiàn),以便進(jìn)行運(yùn)行效率評(píng)估、健康狀況評(píng)估以及預(yù)測(cè)維護(hù)等。2.電氣數(shù)據(jù):包括設(shè)備的電流、電壓、功率、電阻等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的電氣性能和電能消耗情況,以便進(jìn)行能效評(píng)估、設(shè)備故障診斷等。3.振動(dòng)數(shù)據(jù):包括設(shè)備的振動(dòng)幅值、頻率、相位等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的振動(dòng)情況,以便進(jìn)行故障診斷和預(yù)測(cè)維護(hù)等。4.聲音數(shù)據(jù):包括設(shè)備的聲音頻率、聲音強(qiáng)度、聲音特征等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備的聲學(xué)性能,以便進(jìn)行故障診斷和預(yù)測(cè)維護(hù)等。5.圖像數(shù)據(jù):包括設(shè)備的照片、視頻、紅外圖像等。這些數(shù)據(jù)可以反映設(shè)備的外觀、結(jié)構(gòu)、熱特性等信息,以便進(jìn)行故障診斷、安全檢查和維護(hù)計(jì)劃制定等。6.環(huán)境數(shù)據(jù):包括設(shè)備周圍環(huán)境的溫度、濕度、氣壓、光照等參數(shù)。這些數(shù)據(jù)可以反映設(shè)備所處的環(huán)境條件,以便進(jìn)行設(shè)備健康評(píng)估、預(yù)測(cè)維護(hù)等。盈蓓德科技可以提供更經(jīng)濟(jì)更可靠的旋轉(zhuǎn)設(shè)備健康狀態(tài)監(jiān)測(cè)方案。南京電機(jī)監(jiān)測(cè)特點(diǎn)
刀具監(jiān)測(cè)主要采用人工檢測(cè)、離線檢測(cè)和在線檢測(cè)三種策略。人工檢查是指工人在加工過(guò)程中可以憑經(jīng)驗(yàn)檢查刀具的狀態(tài);離線檢測(cè)是在加工前專門對(duì)刀具進(jìn)行檢測(cè),預(yù)測(cè)其壽命,看是否能勝任當(dāng)前的加工;在線檢測(cè)又稱實(shí)時(shí)檢測(cè),是在加工過(guò)程中對(duì)刀具進(jìn)行實(shí)時(shí)檢測(cè),并根據(jù)檢測(cè)結(jié)果做出相應(yīng)的處理。目前刀具檢測(cè)的算法有很多,有的是利用理論計(jì)算刀具上應(yīng)力的變化來(lái)判斷刀具的損傷.有的是利用時(shí)間序列分析來(lái)檢測(cè)刀具,有的是利用神經(jīng)網(wǎng)絡(luò)技術(shù)來(lái)檢測(cè)刀具。還有的是利用小波變換理論和神經(jīng)網(wǎng)絡(luò)技術(shù)來(lái)檢測(cè)刀具,但都是以理論為主??紤]到刀具的塑性損傷在數(shù)控加工中很少發(fā)生,磨損對(duì)數(shù)控加工的安全性影響很小,并且可以通過(guò)離線檢測(cè)進(jìn)行加工,通過(guò)在線檢測(cè),可以判斷微裂紋在當(dāng)前載荷條件下是否會(huì)擴(kuò)展。如果有可能擴(kuò)大,我們認(rèn)為載 荷是危險(xiǎn)的,通過(guò)減少刀具的進(jìn)給量來(lái)減少刀具上的載荷,以保證刀具的安全性。嘉興仿真監(jiān)測(cè)介紹電機(jī)發(fā)生故障前進(jìn)行監(jiān)測(cè)和故障預(yù)測(cè),成為本領(lǐng)域技術(shù)人員亟需解決的技術(shù)問(wèn)題。
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài),可視為模式識(shí)別任務(wù)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過(guò)程系統(tǒng)收集可能影響過(guò)程狀態(tài)的信號(hào),包括溫度、流量等過(guò)程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的系統(tǒng)狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來(lái);4)特征分類步驟是通過(guò)算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的**知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒(méi)有統(tǒng)一的程序來(lái)完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。
針對(duì)刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過(guò)程中難以在線監(jiān)測(cè)這一問(wèn)題,提出一種通過(guò)OPCUA通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對(duì)當(dāng)前的刀具磨損狀態(tài)進(jìn)行識(shí)別的方法。通過(guò)OPCUA采集機(jī)床內(nèi)部實(shí)時(shí)數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識(shí)別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測(cè)模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識(shí)別的方法在投入使用時(shí)還有一些問(wèn)題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測(cè)得的,而實(shí)際加工過(guò)程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對(duì)于刀具磨損的影響,并針對(duì)常用的一些加工場(chǎng)景,建立不同的模型庫(kù)。變換加工場(chǎng)景時(shí),通過(guò)OPCUA獲取當(dāng)前場(chǎng)景,及時(shí)匹配相應(yīng)的預(yù)測(cè)模型即可。②本研究中的模型是一個(gè)固定的模型。今后需要根據(jù)實(shí)時(shí)的信號(hào)以及已知的磨損狀態(tài),對(duì)模型進(jìn)行實(shí)時(shí)更新,從而在實(shí)時(shí)監(jiān)測(cè)過(guò)程中實(shí)現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測(cè)效果。電機(jī)監(jiān)測(cè)系統(tǒng)幫助識(shí)別處于初期階段的機(jī)械和液壓故障,從而制定更為合理的輔助維護(hù)計(jì)劃。
預(yù)測(cè)性維護(hù)應(yīng)運(yùn)而生。其是以狀態(tài)為依據(jù)的維修,主要是對(duì)設(shè)備在運(yùn)行中產(chǎn)生的二次效應(yīng)(如振動(dòng)、噪聲、沖擊脈沖、油樣成分、溫度等)進(jìn)行連續(xù)在線的狀態(tài)監(jiān)測(cè)及數(shù)據(jù)分析,診斷并預(yù)測(cè)設(shè)備故障的發(fā)展趨勢(shì),提前制定預(yù)測(cè)性維護(hù)計(jì)劃并實(shí)施檢維修的行為??傮w來(lái)看,狀態(tài)監(jiān)測(cè)和故障診斷是判斷預(yù)測(cè)性維護(hù)是否合理的根本所在,數(shù)據(jù)狀態(tài)的連續(xù)監(jiān)測(cè)和遠(yuǎn)程傳輸上傳相對(duì)已經(jīng)比較成熟,而狀態(tài)預(yù)測(cè)和故障診斷主要還是依靠人工分析實(shí)現(xiàn),診斷分析人員通過(guò)趨勢(shì)?波形?頻譜等專業(yè)分析工具,結(jié)合傳動(dòng)結(jié)構(gòu)?機(jī)械部件參數(shù)等信息,實(shí)現(xiàn)設(shè)備故障的精細(xì)定位。其發(fā)展趨勢(shì)是將物聯(lián)網(wǎng)及人工智能技術(shù)引入狀態(tài)預(yù)測(cè)及故障的智能診斷,從而降低誤判概率,大幅提升診斷效率和準(zhǔn)確性。電機(jī)監(jiān)測(cè)是一款便攜式診斷工具,用于確認(rèn)并解決設(shè)備問(wèn)題。上海穩(wěn)定監(jiān)測(cè)技術(shù)
盈蓓德科技通過(guò)在機(jī)測(cè)量和檢測(cè),進(jìn)行數(shù)控機(jī)床的刀具質(zhì)量監(jiān)測(cè)。南京電機(jī)監(jiān)測(cè)特點(diǎn)
五千年文明相伴,七十載滄桑巨變,中國(guó)走在偉大復(fù)興的道路上,各項(xiàng)事業(yè)都取得了突出的成績(jī)。電工電氣在這十多年發(fā)生了巨大的變化,電工電氣從弱到強(qiáng)的發(fā)展歷程,克服了外部環(huán)境壓力,從產(chǎn)能規(guī)模、技術(shù)水平等各方面帶領(lǐng)了全球發(fā)展,這也正是新中國(guó)走向強(qiáng)盛的縮影,當(dāng)之無(wú)愧“地區(qū)名片”這份榮譽(yù)。近年來(lái),在我國(guó)的大力支持和行業(yè)自身努力下,智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)技術(shù)改造和產(chǎn)品開拓取得了較大進(jìn)展,企業(yè)的裝備水平和產(chǎn)品結(jié)構(gòu)有所改善。通過(guò)深入改進(jìn),我們更要牢固樹立質(zhì)量良好的認(rèn)識(shí),質(zhì)量是企業(yè)的生命線。隨著國(guó)產(chǎn)元器件技術(shù)的不斷發(fā)展,銷售企業(yè)在“走向海外”的過(guò)程中也交出了滿意的答卷。尤其是象征高技術(shù)產(chǎn)業(yè)的逆變器中國(guó)出貨量居世界優(yōu)先,使得更多企業(yè)依托技術(shù)在國(guó)際市場(chǎng)上取得明顯成果,相關(guān)企業(yè)的產(chǎn)品已覆蓋澳大利亞、巴西、德國(guó)、英國(guó)、法國(guó)、西班牙等30多個(gè)地區(qū),成為相關(guān)市場(chǎng)的重要參與者。在銷售技術(shù)研發(fā)和自主創(chuàng)新方面,有些企業(yè)已取得多項(xiàng)發(fā)明專利和資質(zhì)認(rèn)證,碩果頗豐,特別是組串式逆變器自用的直流開關(guān)是國(guó)產(chǎn)中獨(dú)一擁有UL認(rèn)證的直流開關(guān)產(chǎn)品。此外,根據(jù)不同市場(chǎng)特性,通過(guò)優(yōu)勢(shì)互補(bǔ),開發(fā)適合各國(guó)當(dāng)?shù)匕l(fā)展、市場(chǎng)需求的產(chǎn)品及服務(wù),獲得了多國(guó)合作伙伴的高度認(rèn)可。南京電機(jī)監(jiān)測(cè)特點(diǎn)
上海盈蓓德智能科技有限公司依托可靠的品質(zhì),旗下品牌盈蓓德,西門子以高質(zhì)量的服務(wù)獲得廣大受眾的青睞。旗下盈蓓德,西門子在電工電氣行業(yè)擁有一定的地位,品牌價(jià)值持續(xù)增長(zhǎng),有望成為行業(yè)中的佼佼者。隨著我們的業(yè)務(wù)不斷擴(kuò)展,從智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)等到眾多其他領(lǐng)域,已經(jīng)逐步成長(zhǎng)為一個(gè)獨(dú)特,且具有活力與創(chuàng)新的企業(yè)。盈蓓德科技始終保持在電工電氣領(lǐng)域優(yōu)先的前提下,不斷優(yōu)化業(yè)務(wù)結(jié)構(gòu)。在智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)等領(lǐng)域承攬了一大批高精尖項(xiàng)目,積極為更多電工電氣企業(yè)提供服務(wù)。