電機狀態(tài)監(jiān)測和振動分析提供加速度計選擇的建議。這些建議基于直流和非同步交流電機的常見故障。這些常見故障可通過振動分析檢測出來,包括機械和電氣故障。重點是傳感器的頻率范圍及其安裝方法,以便可靠地檢測這些故障。例如,考慮以幾百赫茲的周期性頻率(稱為故障頻率)發(fā)生的撞擊事件,但每個事件的能量可從起始點帶走,頻率在低至千赫范圍內(nèi)。因此,用于檢測撞擊、摩擦和凹槽等事件的傳感器應在幾百赫茲到20千赫的寬頻范圍內(nèi)響應。對于傳統(tǒng)的機械故障,如平衡和對準,頻率范圍從約0.2倍的運行速度到50-60倍的運行速度是足夠的。電氣故障需要機械故障所需的低頻和高頻段。
電機會同時出現(xiàn)機械和電氣故障,這會導致振動。只要安裝的振動傳感器具有足夠的帶寬和靈敏度,就可以檢測到這些故障。機械故障伴隨著沖擊、摩擦和疲勞,會產(chǎn)生比電氣故障頻率更***的振動,但凹槽除外。凹槽產(chǎn)生的振動頻率與摩擦頻率大致相同。如果傳感器的帶寬和安裝方法足以檢測機械故障,那么它們也將檢測電氣故障。 隨著工業(yè)互聯(lián)網(wǎng)的落地,大型旋轉(zhuǎn)類設備振動監(jiān)測的重要性日益加強。嘉興電機監(jiān)測價格
針對刀具磨損狀態(tài)在實際生產(chǎn)加工過程中難以在線監(jiān)測這一問題,提出一種通過OPCUA通信技術獲取機床內(nèi)部數(shù)據(jù),對當前的刀具磨損狀態(tài)進行識別的方法。通過OPCUA采集機床內(nèi)部實時數(shù)據(jù)并將其與實際加工情景緊密結合,能直接反映當前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡用于構建刀具磨損狀態(tài)識別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現(xiàn)都符合預期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數(shù)試驗,考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過OPCUA獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據(jù)實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現(xiàn)自學習,不斷提升模型的精度和預測效果。南通產(chǎn)品質(zhì)量監(jiān)測數(shù)據(jù)電機的狀態(tài)監(jiān)測,以采集的電機電流和振動信號為例,可以采用多特征融合的故障診斷方法。
整體的網(wǎng)絡架構來看,智能振動噪聲監(jiān)診子系統(tǒng)利用安裝在設備上的傳感器節(jié)點獲取設備的健康狀態(tài)監(jiān)測信號和運行參數(shù)數(shù)據(jù),經(jīng)網(wǎng)絡層集中上傳至設備健康監(jiān)測物聯(lián)網(wǎng)綜合管理平臺,實現(xiàn)數(shù)據(jù)傳輸。應用層實現(xiàn)監(jiān)測信號的分析?故障特征提取?故障診斷及預測功能,實現(xiàn)智能化管理?應用和服務。設備健康監(jiān)測物聯(lián)網(wǎng)綜合管理平臺具有強大的數(shù)據(jù)采集分析處理?數(shù)據(jù)可視?設備運維?故障診斷?故障報警等功能。通過實時監(jiān)測查看?統(tǒng)計?追溯,實現(xiàn)對其管轄設備的實時監(jiān)測和運行維護,基于運行信息和檢修信息?自動生成設備管理報表,實現(xiàn)設備可靠性?故障數(shù)據(jù)?更換備件等信息統(tǒng)計,為維修方案提供依據(jù)。
作為工業(yè)領域的一種關鍵旋轉(zhuǎn)設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經(jīng)銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實現(xiàn)電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業(yè)場景設備類型多,運行工況復雜,預測性維護算法涉及數(shù)據(jù)預處理、工業(yè)機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。以電機預測性維護理念為**的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機維護人員為**的電機運維來說,都還有很遠的一段距離!
新型的電機故障預測系統(tǒng)方案具有輕量化和性價比優(yōu)勢,能在更多的工業(yè)場合應用。
在預防性維護的應用中,振動是大型旋轉(zhuǎn)等設備即將發(fā)生故障的重要指標,一是由于在大型旋轉(zhuǎn)機械設備的所有故障中,振動問題出現(xiàn)的概率比較高;另一方面,振動信號包含了豐富的機械及運行的狀態(tài)信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監(jiān)測和診斷。旋轉(zhuǎn)類設備的預防性維護需要重點監(jiān)控振動量的變化。其預測性診斷技術對于制造業(yè)、風電等的行業(yè)的運維具有非常重大的意義。通過設備振動等狀態(tài)的預測性維護,可以及時發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對于一些不是因為設備問題而存在的固有振動,振動強度的不必要增加會對部件產(chǎn)生有害的力,危及設備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動隔離技術來解決和干預,有效抑制振動和噪聲的危害,避免設備故障和流程關閉。盈蓓德科技能為風機提供早期有效預知傳動鏈故障、軸承損傷、齒輪箱、發(fā)電機等故障的狀態(tài)監(jiān)測解決方案。上海電力監(jiān)測數(shù)據(jù)
電機監(jiān)測系統(tǒng)幫助識別處于初期階段的機械和液壓故障,從而制定更為合理的輔助維護計劃。嘉興電機監(jiān)測價格
設備早期故障診斷是設備全生命周期健康狀態(tài)監(jiān)測診斷體系的重要環(huán)節(jié).盡早對設備潛在的故障作出可靠判斷,對于保障設備的可靠運行具有重要意義.早期故障特征提取技術是檢測設備早期故障的有效工具.研究了典型的設備故障發(fā)展過程,以早期故障特征提取技術為基礎,結合多技術融合方法,建立了設備全生命周期健康狀態(tài)監(jiān)測診斷體系,以促進設備廠家改進生產(chǎn)制造質(zhì)量,流程工業(yè)企業(yè)優(yōu)化檢維修流程.應用以早期故障特征提取技術為重點的多技術融合方法,打造設備從生產(chǎn)制造,出廠檢驗到現(xiàn)場應用的全生命周期健康狀態(tài)監(jiān)測診斷閉環(huán),實現(xiàn)了設備健康狀態(tài)的全程可控.嘉興電機監(jiān)測價格
上海盈蓓德智能科技有限公司致力于電工電氣,以科技創(chuàng)新實現(xiàn)高質(zhì)量管理的追求。盈蓓德科技深耕行業(yè)多年,始終以客戶的需求為向?qū)?,為客戶提供高質(zhì)量的智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)。盈蓓德科技不斷開拓創(chuàng)新,追求出色,以技術為先導,以產(chǎn)品為平臺,以應用為重點,以服務為保證,不斷為客戶創(chuàng)造更高價值,提供更優(yōu)服務。盈蓓德科技始終關注電工電氣市場,以敏銳的市場洞察力,實現(xiàn)與客戶的成長共贏。