視覺跟蹤技術是計算機視覺領域(人工智能分支)的一個重要課題,有著重要的研究意義;且在導彈制導、視頻監(jiān)控、機器人視覺導航、人機交互、以及醫(yī)療診斷等許多方面有著廣泛的應用前景。隨著研究人員不斷地深入研究,視覺目標跟蹤在近十幾年里有了突破性的進展,使得視覺跟蹤算法不只是局限于傳統(tǒng)的機器學習方法,更是結合了近些年人工智能熱潮—深度學習(神經網絡)和相關濾波器等方法,并取得了魯棒(robust)、精確、穩(wěn)定的結果。RV1126處理板如何實現(xiàn)目標的識別及跟蹤?移動目標跟蹤哪里買
視覺目標跟蹤是指在視頻圖像序列的各幀圖像中找到被跟蹤的目標。基于區(qū)域的跟蹤的基本思想是通過圖像分割或預先人為確定,提取包含著運動目標的運動變化的區(qū)域范圍作為匹配的目標模板,然后把目標模板與實時圖像在所有可能位置上進行疊加,然后計算某種圖像相似性度量的相應值,其比較大相似性相對應的位置就是目標的位置,Jorge等人提出的區(qū)域跟蹤算法不僅利用了分割結果來給跟蹤提供信息,同時也能利用跟蹤所提供的信息改善分割效果,把連續(xù)幀的目標匹配起來跟蹤目標。移動目標跟蹤哪里買國內有哪些廠家可以提供全國產化的圖像識別模塊?
目標跟蹤是計算機視覺研究領域的熱點之一,并得到廣泛應用。相機的跟蹤對焦、無人機的自動目標跟蹤等都需要用到了目標跟蹤技術。另外還有特定物體的跟蹤,比如人體跟蹤,交通監(jiān)控系統(tǒng)中的車輛跟蹤,人臉跟蹤和智能交互系統(tǒng)中的手勢跟蹤等。簡單來說,目標跟蹤就是在連續(xù)的視頻序列中,建立所要跟蹤物體的位置關系,得到物體完整的運動軌跡。給定圖像首幀的目標坐標位置,計算在下一幀圖像中目標的確切位置。在運動的過程中,目標可能會呈現(xiàn)一些圖像上的變化,比如姿態(tài)或形狀的變化、尺度的變化、背景遮擋或光線亮度的變化等。目標跟蹤算法的研究也圍繞著解決這些變化和具體的應用展開。
相關濾波的跟蹤算法始于2012年P.Martins提出的CSK方法,作者提出了一種基于循環(huán)矩陣的核跟蹤方法,并且從數(shù)學上完美解決了密集采樣(Dense Sampling)的問題,利用傅立葉變換快速實現(xiàn)了檢測的過程。在訓練分類器時,一般認為離目標位置較近的是正樣本,而離目標較遠的認為是負樣本。回顧前面提到的TLD或Struck,他們都會在每一幀中隨機地挑選一些塊進行訓練,學習到的特征是這些隨機子窗口的特征,而CSK作者設計了一個密集采樣的框架,能夠學習到一個區(qū)域內所有圖像塊的特征。RV1126圖像處理板是我司自主研發(fā)的目標跟蹤板,該板卡采用國產高性能CPU,搭載自研目標跟蹤及跟蹤算法。
由于侵入的目標的形狀和顏色等特征是難以固定的,再加上監(jiān)控的場景,即背景往往比較復雜,只利用一個單幀圖像就找出移動的目標是非常困難的。然而,目標的運動導致了其運動時間內,監(jiān)控場景圖像的連續(xù)變化,所以,使用圖像序列分析往往是比較有效的,而且適合于低信噪比的情況。由于監(jiān)控系統(tǒng)通常監(jiān)控的視野比較大,系統(tǒng)設置的環(huán)境較為惡劣,圖像傳輸?shù)木嚯x較遠,從而導致圖像的信噪比不高,因此采用突出目標的方法,需要在配準的前提下進行多幀能量積累和噪聲抑制。在該技術中,要研究的問題有,相鄰的兩幅或多幅圖像之間的關系是什么關系,是簡單的圖像差的值,還是多幅之間差的最大值,還是其他的與圖像減法之間的其他函數(shù)關系,是尤其需要研究的。在研究中,研究如何差,如何自動得到差圖像的分割門限,如何減小背景和突出目標是研究的方向。RK3399PRO圖像處理板識別概率超過85%。移動目標跟蹤哪里買
成都慧視的跟蹤版是國產化的!移動目標跟蹤哪里買
目標跟蹤是在首幀中給定待跟蹤目標的情況下,對目標進行特征提取,對感興趣區(qū)域進行分析;然后在后續(xù)圖像中找到相似的特征和感興趣區(qū)域,并對目標在下一幀中的位置進行預測。作為計算機視覺領域的一個熱點研究方向,目標跟蹤一直都是一項具有挑戰(zhàn)性的工作。目標跟蹤技術在導彈制導、智能監(jiān)控系統(tǒng)、視頻檢索、無人駕駛、人機交互和工業(yè)機器人等領域具有重要的作用。從上世紀50年代目標跟蹤的起源到現(xiàn)今,盡管已有大量的研究成果,但是在復雜條件下實現(xiàn)實時準確的跟蹤依舊難以實現(xiàn)。移動目標跟蹤哪里買