通過對顯微光學(xué)系統(tǒng)的重新設(shè)計(jì),將FHIRM-TPM2.0的成像視場擴(kuò)展至420×420平方微米,顯微物鏡的工作距離擴(kuò)展至1mm,實(shí)現(xiàn)無創(chuàng)成像。嵌入可拆卸的快速軸向掃描模塊,實(shí)現(xiàn)深度180微米的三維體成像和多平面快速切換的實(shí)時(shí)成像。該模塊由一個(gè)快速電動(dòng)變焦鏡頭和一對中繼鏡頭組成,在不同深度成像時(shí)保持放大率恒定。其中,變焦模塊重1.8克,科研人員可以根據(jù)實(shí)驗(yàn)要求自由拆卸。此外,新型微型成像探頭可以瞬間插拔,極大簡化了實(shí)驗(yàn)操作,避免了長時(shí)間實(shí)驗(yàn)對動(dòng)物的干擾。反復(fù)裝卸探針追蹤同批神經(jīng)元時(shí),視場旋轉(zhuǎn)角度小于0.07弧度,邊界偏差小于35微米。雙光子顯微鏡知多少。國內(nèi)激光雙光子顯微鏡分辨率
微型化雙光子熒光顯微成像改變了在自由活動(dòng)動(dòng)物中觀察細(xì)胞和亞細(xì)胞結(jié)構(gòu)的方式,可用于在動(dòng)物覓食、哺乳、跳臺(tái)、打斗、嬉戲、睡眠等自然行為條件下,長時(shí)程觀察神經(jīng)突觸、神經(jīng)元、神經(jīng)網(wǎng)絡(luò)、遠(yuǎn)程連接的腦區(qū)等多尺度、多層次動(dòng)態(tài)變化。該成果在2016年底美國神經(jīng)科學(xué)年會(huì)、2017年5月冷泉港亞洲腦科學(xué)專題會(huì)議上報(bào)告后,得到包括多位諾貝爾獎(jiǎng)獲得者在內(nèi)的國內(nèi)外神經(jīng)科學(xué)家的高度贊譽(yù)。冷泉港亞洲腦科學(xué)專題會(huì)議、美國明顯神經(jīng)科學(xué)家加州大學(xué)洛杉磯分校的AlcinoJSilva教授在評述中寫道,“從任何一個(gè)標(biāo)準(zhǔn)來看,這款顯微鏡都了一項(xiàng)重大技術(shù)發(fā)明,必將改變我們在自由活動(dòng)動(dòng)物中觀察細(xì)胞和亞細(xì)胞結(jié)構(gòu)的方式。它所開啟的大門,甚至超越了神經(jīng)元和樹突成像。系統(tǒng)神經(jīng)生物學(xué)正在進(jìn)入一個(gè)新的時(shí)代,即通過對細(xì)胞群體中可辨識(shí)的細(xì)胞和亞細(xì)胞結(jié)構(gòu)的復(fù)雜生物學(xué)事件進(jìn)行成像觀測。國內(nèi)激光雙光子顯微鏡分辨率于雙光子激發(fā)需要兩個(gè)光子同時(shí)到達(dá),因此只有在焦點(diǎn)附近的樣品區(qū)域才會(huì)激發(fā),從而實(shí)現(xiàn)三維成像和高分辨率。
隨著技術(shù)的發(fā)展,雙光子顯微鏡的性能不斷優(yōu)化。結(jié)合其特點(diǎn),大致可以分為兩個(gè)方面:深入和主動(dòng)改進(jìn)。為了使激發(fā)激光進(jìn)入更深的層次,可以從器件優(yōu)化和標(biāo)本改造兩個(gè)方面入手。關(guān)于器件的優(yōu)化,我們可以把激光束做得更細(xì),集中能量,讓激光穿透得更深。對于樣品,物質(zhì)的吸收和散射是影響光傳播的主要因素。為了解決這個(gè)問題,我們需要將樣本透明化。一種方法是用某種物質(zhì)浸泡標(biāo)本,使其中的物質(zhì)(主要是脂質(zhì))被破壞或溶解。另一種方法是通過電泳電解脂類,從而提高標(biāo)本的“透明度”。
共聚焦顯微可以呈現(xiàn)這么漂亮的圖像,是不是什么樣品都可以用共聚焦顯微鏡拍拍拍.....得到各種各樣清晰漂亮的圖像呢?答案是否定的,任何事物都有優(yōu)缺點(diǎn),何況一臺(tái)儀器呢,共聚焦顯微鏡也是有自己的局限,共聚焦有哪些局限呢:1.共聚焦顯微鏡只能拍攝約200um以內(nèi)的的樣品,對于厚的或者樣品不能進(jìn)拍攝;2.共聚焦顯微鏡由于是逐點(diǎn)進(jìn)行掃描,對樣品的光毒性還是比較大的,特別是拍攝活細(xì)胞樣品時(shí)就更容易對樣品進(jìn)行淬滅;3.由于光照射的區(qū)域幾乎能通過這個(gè)Z軸的層面,所以對于空間定點(diǎn)光刺激的實(shí)驗(yàn)定點(diǎn)位置就不是特別精確;并且激光共聚焦顯微鏡沒有純紫外進(jìn)行激發(fā),對于一些特殊激發(fā)波長的實(shí)驗(yàn),效率非常低。雙光子顯微鏡的基本原理是:在高光子密度的情況下,熒光分子可以同時(shí)吸收2個(gè)長波長的光子,在經(jīng)過一個(gè)很短的所謂激發(fā)態(tài)壽命的時(shí)間后,發(fā)射出一個(gè)波長較短的光子;其效果和使用一個(gè)波長為長波長一半的光子去激發(fā)熒光分子是相同的。雙光子激發(fā)需要很高的光子密度,為了不損傷細(xì)胞,雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖寬度只有100飛秒,而其周期可以達(dá)到80至100兆赫茲。雙光子顯微鏡已延伸到各個(gè)領(lǐng)域研究中,它能對樣品進(jìn)行三維觀察。
1990年初,當(dāng)WinfriedDenk剛從康奈爾大學(xué)博士畢業(yè)準(zhǔn)備前往瑞士讀博后時(shí),他看了一本關(guān)于激光掃描顯微鏡的書,從中了解到非線性光學(xué)效應(yīng)——強(qiáng)光和物質(zhì)的相互作用。當(dāng)時(shí),Denk有同事研究生物樣品中的鈣離子但苦于沒有強(qiáng)大的紫外激光器和光學(xué)元件,于是他就想到如果使用雙光子吸收就能夠繞開紫外,換言之,與其通過一個(gè)紫外光子激發(fā)標(biāo)記的鈣離子,通過兩個(gè)雙倍波長的可見光光子也能激發(fā)相同的熒光。有了想法后馬上實(shí)驗(yàn)。借了一套染料飛秒激光器,Denk聯(lián)合他的導(dǎo)師WattWebb及其博士生JamesStrickler只用六個(gè)小時(shí)就完成了實(shí)驗(yàn)搭建,采集數(shù)據(jù)則用了兩到三天,于是一篇里程碑式的文章就此誕生了。微型雙光子顯微鏡的優(yōu)勢是。國內(nèi)bruker雙光子顯微鏡熒光壽命計(jì)數(shù)
雙光子顯微鏡大量運(yùn)營在實(shí)驗(yàn)室當(dāng)中;國內(nèi)激光雙光子顯微鏡分辨率
雙光子吸收理論早在1931年就由諾獎(jiǎng)得主提出,30年后因?yàn)橛辛思す獠诺玫綄?shí)驗(yàn)驗(yàn)證,但是到WinfriedDenk發(fā)明雙光子顯微鏡又用了將近30年。要理解雙光子的技術(shù)挑戰(zhàn)和飛秒激光發(fā)揮的重要作用,首先要了解其中的非線性過程。雙光子吸收相當(dāng)于和頻產(chǎn)生非線性過程,這要求極高的電場強(qiáng)度,而電場取決于聚焦光斑大小和激光脈寬。聚焦光斑越小,脈寬越窄,雙光子吸收效率越高。對于衍射極限顯微鏡,聚焦在樣品上的光斑大小只和物鏡NA和激光波長有關(guān),所以關(guān)鍵變量只剩下激光脈寬?;谝陨戏治觯軌蛞愿咧仡l(100MHz)輸出超短脈沖(100fs量級)的飛秒激光器成了雙光子顯微鏡的標(biāo)準(zhǔn)激發(fā)光源。這也再次說明雙光子顯微鏡的優(yōu)勢:只有焦平面處才能形成雙光子吸收,而焦平面之外由于光強(qiáng)低無法被激發(fā),所以雙光子成像更清晰。WinfriedDenk初使用的光源是染料飛秒激光器(100fs脈寬、630nm可見光波長)。雖然染料激光器對于實(shí)驗(yàn)室演示尚可,但是使用很不方便所以遠(yuǎn)未實(shí)現(xiàn)商用。很快雙光子顯微鏡的標(biāo)配光源就變成了飛秒鈦寶石激光器。除了固態(tài)光源優(yōu)勢,鈦寶石激光器還具有較寬的近紅外波長調(diào)諧范圍,而近紅外相比可見光穿透更深,對生物樣品損傷更小。國內(nèi)激光雙光子顯微鏡分辨率