微納加工技術具有高精度、科技含量高、產品附加值高等特點,能突顯一個國家工業(yè)發(fā)展水平,在推動科技進步、促進產業(yè)發(fā)展、提升生活品質等方面都發(fā)揮著重要作用。廣東省科學院半導體研究所微納加工平臺,是國內少數(shù)擁有完整半導體工藝鏈的研究平臺之一,可進行鍍膜、光刻、刻蝕等工藝,加工尺寸覆蓋2-6英寸。微納加工平臺將面向國內外科研機構和企業(yè)提供全方面的開放服務,對半導體材料與器件的深入研發(fā)給予全方面支持,能夠為廣大科研單位和企業(yè)提供高質量檔次服務。干法刻蝕能夠滿足亞微米/納米線寬制程技術的要求,且在微納加工技術中被大量使用。云南MEMS微納加工外協(xié)電子束光刻技術是利用電子束在涂有電子抗蝕劑的晶片...
作為前沿加工技術,飛秒激光加工具有熱影響區(qū)小、與材料相互作用呈非線性過程、超出衍射極限的高分辨率加工等特點,可以實現(xiàn)對各種材料的高質量、高精度微納米加工和三維微納結構制造。飛秒激光對材料的加工方式靈活多樣,既可實現(xiàn)增材、減材和等材制造,又能夠以激光直寫和激光并行加工的方式制備微納結構。其中,飛秒激光直寫通常用于復雜、不規(guī)則的微納結構加工,具有較高的空間分辨率、加工靈活性和自由度,然而鑒于其逐點加工的技術特點,加工效率較低;飛秒激光并行加工包括基于數(shù)字微鏡器件的光刻技術、空間光調制器和激光干涉加工等方法,具有較高的加工效率,但無法加工任意三維微結構。飛秒激光加工方式各有優(yōu)缺點,可以...
濺射鍍膜有兩種方式:一種稱為離子束濺射,指真空狀態(tài)下用離子束轟擊靶表面,使濺射出的粒子在基體表面成膜,該工藝較為昂貴,主要用于制取特殊的薄膜;另一種稱為陰極濺射,主要利用低壓氣體放電現(xiàn)象,使處于等離子狀態(tài)下的離子轟擊靶面,濺射出的粒子沉積在基體上。它采用平行板電極結構,膜料物質做成的大面積靶為陰極,支持基體的基板為陽極,安裝于鐘罩式真空容器內。為減少污染,先將鐘罩內的壓強抽到小于10-3~10-4Pa,然后充入Ar氣,使壓強維持在1~10Pa。在兩極之間加數(shù)千伏的電壓進行濺射鍍膜。與蒸發(fā)鍍膜相比,濺射鍍膜時靶材(膜料)無相變,化合物成分穩(wěn)定,合金不易分餾,因此適合制備的膜材非常廣。...
在過去的50多年中,微納加工技術的進步極大地促進了微電子技術和光電子技術的發(fā)展。微電子技術的發(fā)展以超大規(guī)模集成電路為,集成度以每18個月翻一番的速度提高,使得以90nm為小電路尺寸的集成電路芯片已經開始批量生產.以光刻與刻蝕為基礎的平面為加工技術已經成為超大規(guī)模集成電路的技術,隨著電子束光刻技術和電感耦合等離子體(ICP)刻蝕技術的出現(xiàn),平面微納加工工藝正在推動以單電子器件與自旋電子器件為的新一代納米電子學的發(fā)展.光刻膠是微納加工中微細圖形加工的關鍵材料之一。遼寧真空鍍膜微納加工價錢微納制造技術屬國際前沿技術,作為未來制造業(yè)賴以生存的基礎和可持續(xù)發(fā)展的關鍵,其研發(fā)和應用標志著人類可以...
微納加工技術指尺度為亞毫米、微米和納米量級元件以及由這些元件構成的部件或系統(tǒng)的優(yōu)化設計、加工、組裝、系統(tǒng)集成與應用技術,涉及領域廣、多學科交叉融合,其主要的發(fā)展方向是微納器件與系統(tǒng)(MEMS和NEMS)。微納器件與系統(tǒng)是在集成電路制作上發(fā)展的系列技術,研制微型傳感器、微型執(zhí)行器等器件和系統(tǒng),具有微型化、批量化、成本低的鮮明特點,對現(xiàn)活、生產產生了巨大的促進作用,并催生了一批新興產業(yè)。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域,致力于打造的公益性、開放性、支撐性樞紐中心。平臺擁有半導體制備工藝所需的整套儀器設備,建立了一條實...
光刻是微納加工技術中關鍵的工藝步驟,光刻的工藝水平決定產品的制程水平和性能水平。光刻的原理是在基底表面覆蓋一層具有高度光敏感性光刻膠,再用光線(一般是紫外光、深紫外光、極紫外光)透過光刻板照射在基底表面,被光線照射到的光刻膠會發(fā)生反應。此后用顯影液洗去被照射/未被照射的光刻膠, 就實現(xiàn)了圖形從光刻板到基底的轉移。光刻膠分為正性光刻和負性光刻兩種基本工藝,區(qū)別在于兩者使用的光刻膠的類型不同。負性光刻使用的光刻膠在曝光后會因為交聯(lián)而變得不可溶解,并會固化,不會被溶劑洗掉,從而該部分硅片不會在后續(xù)流程中被腐蝕掉,負性光刻光刻膠上的圖形與掩模版上圖形相反。微納制造技術是指尺度為毫米、微米和...
2012年北京工業(yè)大學Duan等使用課題組自行研制的皮秒激光器對金屬鉬、鈦和不銹鋼進行了精密制孔研究,并利用旋切制孔方式對厚度為0.3mm的金屬鉬實現(xiàn)了孔徑?小于200μm的微孔加工,利用螺旋制孔方式在厚度為1mm不銹鋼上實現(xiàn)了孔徑為200μm的制孔效果。實驗指出大口徑微孔加工應采用旋切制孔方式,而加工較小口徑時則更宜選用螺旋制孔方式。皮秒激光精密微孔加工過程中,對于厚度較小的材料(d<1μm),由于激光與材料作用的時間較短,以采用高峰值功率、窄脈寬的激光為宜,而對于厚度在百微米甚至超過1mm的金屬材料的微孔加工,除了要考慮激光峰值功率以及脈沖寬度外,選擇合適的制孔方式是必要的。此外,根據(jù)材料...
光刻是半導體制造中常用的技術之一,是現(xiàn)代光電子器件制造的基礎。然而,深紫外和極紫外光刻系統(tǒng)及其相應的光學掩模都是基于低速高成本的電子束光刻(EBL)或者聚焦離子束刻蝕(FIB)技術,導致其價格都相對昂貴。因此,無掩模的高速制備法是微納結構制備的優(yōu)先方法。在這些無掩模方法中,直接激光寫入(direct laser writing, DLW)是一種重要的、被廣采用的微處理技術,能夠提供比較低的價格和相對較高的吞吐量。但是,實際應用中存在兩個主要挑戰(zhàn):一是與FIB和EBL相比,分辨率還不夠高。濕法刻蝕較普遍、也是成本較低的刻蝕方法。深圳半導體微納加工價錢微納加工工藝基本分為表面加工體加工兩大塊,基本...
在微電子與光電子集成中,薄膜的形成方法主要有兩大類,及沉積和外延生長。沉積技術分為物理沉積、化學沉積和混合方法沉積。蒸發(fā)沉積(熱蒸發(fā)、電子束蒸發(fā))和濺射沉積是典型的物理方法;化學氣相沉積是典型的化學方法;等離子體增強化學氣相沉積是物理與化學方法相結合的混合方法。薄膜沉積過程,通常生成的是非晶膜和多晶膜,沉積部位和晶態(tài)結構都是隨機的,而沒有固定的晶態(tài)結構。外延生長實質上是材料科學的薄膜加工方法,其含義是:在一個單晶的襯底上,定向地生長出與基底晶態(tài)結構相同或相似的晶態(tài)薄層。其他薄膜成膜方法,如電化學沉積、脈沖激光沉積法、溶膠凝膠法、自組裝法等,也都廣用于微納制作工藝中。不同的表面微納結構可以呈現(xiàn)出...
濺射鍍膜有兩種方式:一種稱為離子束濺射,指真空狀態(tài)下用離子束轟擊靶表面,使濺射出的粒子在基體表面成膜,該工藝較為昂貴,主要用于制取特殊的薄膜;另一種稱為陰極濺射,主要利用低壓氣體放電現(xiàn)象,使處于等離子狀態(tài)下的離子轟擊靶面,濺射出的粒子沉積在基體上。它采用平行板電極結構,膜料物質做成的大面積靶為陰極,支持基體的基板為陽極,安裝于鐘罩式真空容器內。為減少污染,先將鐘罩內的壓強抽到小于10-3~10-4Pa,然后充入Ar氣,使壓強維持在1~10Pa。在兩極之間加數(shù)千伏的電壓進行濺射鍍膜。與蒸發(fā)鍍膜相比,濺射鍍膜時靶材(膜料)無相變,化合物成分穩(wěn)定,合金不易分餾,因此適合制備的膜材非常廣。...
微納制造技術的發(fā)展,同樣涉及到科研體系問題。嚴格意義上來說,科研分為三個領域,一個是基礎研究領域,一個是工程化應用領域,一個是市場推廣領域。在發(fā)達國家的科研機制中。幾乎所有的基礎研究領域都是由國家或機構直接或間接支持的。這種基礎研究較看重的是對于國家、民生或國防的長遠意義.而不是短期內的投入與產出。因而致力于基礎研究的機構或者人員。根本不用考慮研究的所謂“市場化”問題。而只是進行基礎、理論的研究。另一方面。工程化應用領域由專門的機構或職能部門負責,這些部門從應用領域、生產領域、制造領域抽調專家、學者及相關專業(yè)人員,對基礎研究的市場應用前景進行分析,并提出可行性建議,末尾由市場或企業(yè)來進行工程化...
仿生學是近年來發(fā)展起來的一門工程技術與生物科學相結合的交叉學科。仿生學研究生物體的結構、功能和工作原理,并將這些原理移植于工程技術之中,試圖在技術上模仿植物和動物在自然中的功能,發(fā)明性能優(yōu)越的儀器、裝置和機器,創(chuàng)造新技術。就聚合物仿生功能材料而言,在聚合物材料表面加工出不同形式的微納結構就會賦予材料不同的性能。超疏水表面是指水滴在表面的接觸角大于150°,同時滾動角小于10°的一種特殊表面。在過去的20年里,超疏水表面誘人的潛在應用價值已經引起了科學家們極大的興趣。自然界中,荷葉表面是超疏水的典型象征,其表面的接觸角高達160°。展示了荷葉的超疏水效果及其表面微觀結構。荷葉表面的這種超疏水特性...
隨著電子束光刻技術和電感耦合等離子體(ICP)刻蝕技術的出現(xiàn),平面微納加工工藝正在推動以單電子器件與自旋電子器件為代標的新一代納米電子學的發(fā)展.當微納加工技術應用到光電子領域,就形成了新興的納米光電子技術,主要研究納米結構中光與電子相互作用及其能量互換的技術.納米光電子技術在過去的十多年里,一方面,以低維結構材料生長和能帶工程為基礎的納米制造技術有了長足的發(fā)展,包括分子束外延(MBE)、金屬有機化學氣相淀積(MOCVD)和化學束外延(CBE),使得在晶片表面外延生長方向(直方向)的外延層精度控制到單個原子層,從而獲得了具有量子尺寸效應的半導體材料;另一方面,平面納米加工工藝實現(xiàn)了納...
目前微納制造領域較常用的一種微細加工技術是LIGA。這項技術由于可加工尺寸小、精度高,適合加工半導體材料,因而在半導體產業(yè)中得到普遍的應用,其較基礎的中心技術是光刻,即曝光和刻蝕工藝。隨著LIGA技術的發(fā)展,人們開發(fā)出了比較多種不同的曝光、刻蝕工藝,以滿足不同精度尺寸、生產效率等的需求。LIGA技術經過多年的發(fā)展,工藝已經相當成熟,但是這項技術的基本原理決定了它必然會存在的一些缺陷,比如工藝過程復雜、制備環(huán)境要求高(比如需要凈化間等)、設備投入大、生產成本高等。微納檢測主要是表征檢測:原子力顯微鏡、掃描電鏡、掃描顯微鏡、XRD、臺階儀等。武漢微納加工價目獲得或保持率先競爭對手的優(yōu)勢將維持強勁的...
20世紀70年代,人們第1次提出微針的概念,但當時的生產工藝達不到制作微針的精度要求。直至90年代微機電系統(tǒng)(MEMS)及其制造工藝得到快速發(fā)展時,微針的加工與應用才再一次進入研究人員的視線。由于微針給藥具有快速、高效、無痛和藥物利用率高等諸多優(yōu)勢,美容行業(yè)對專用美容微針強烈的市場需求也成為了驅動微針研究快速發(fā)展的動力,即為一種常見的商品化聚合物美容微針。微針針體是空心或實心的微米級結構,類似于常用的醫(yī)用注射針頭,并按照一定的排列方式分布于基板上??捎糜谥圃煳⑨樀牟牧隙喾N多樣,其中聚合物微針以其優(yōu)異的生物相容性、可降解性能、穩(wěn)定的力學和化學性能及相對于硅和金屬等傳統(tǒng)微針材料更加低廉的成本而受到...
光刻是半導體制造中常用的技術之一,是現(xiàn)代光電子器件制造的基礎。然而,深紫外和極紫外光刻系統(tǒng)及其相應的光學掩模都是基于低速高成本的電子束光刻(EBL)或者聚焦離子束刻蝕(FIB)技術,導致其價格都相對昂貴。因此,無掩模的高速制備法是微納結構制備的優(yōu)先方法。在這些無掩模方法中,直接激光寫入(direct laser writing, DLW)是一種重要的、被廣采用的微處理技術,能夠提供比較低的價格和相對較高的吞吐量。但是,實際應用中存在兩個主要挑戰(zhàn):一是與FIB和EBL相比,分辨率還不夠高。微納制造技術屬國際前沿技術,作為未來制造業(yè)賴以生存的基礎和可持續(xù)發(fā)展的關鍵。長治微納加工設備 微納...
微納加工技術是先進制造的重要組成部分,是衡量國家高質量的制造業(yè)水平的標志之一,具有多學科交叉性和制造要素極端性的特點,在推動科技進步、促進產業(yè)發(fā)展、拉動科技進步、保障國防安全等方面都發(fā)揮著關鍵作用。微納加工技術的基本手段包括微納加工方法與材料科學方法兩種。很顯然,微納加工技術與微電子工藝技術有密切關系。微納加工大致可以分為“自上而下”和“自下而上”兩類?!白陨隙隆笔菑暮暧^對象出發(fā),以光刻工藝為基礎,對材料或原料進行加工,小結果尺寸和精度通常由光刻或刻蝕環(huán)節(jié)的分辨力決定。“自下而上”技術則是從微觀世界出發(fā),通過控制原子、分子和其他納米對象的相互作用力將各種單元構建在一起,形成微納結構與器件。微...
微納制造技術屬國際前沿技術,作為未來制造業(yè)賴以生存的基礎和可持續(xù)發(fā)展的關鍵,其研發(fā)和應用標志著人類可以在微、納米尺度認識和改造世界。以聚合物為基礎材料的微納系統(tǒng)在整個微納系統(tǒng)中占有極其重要地位,是較具產業(yè)化開發(fā)前景的微納系統(tǒng)之一,聚合物微納制造技術也已經開始得到應用并具有極大的發(fā)展空間。集中介紹了多種典型聚合物微納器件及系統(tǒng),并對微注塑成型、微擠出成型和微納壓印成型等聚合物微納制造技術進行了系統(tǒng)的闡述,比較了各種聚合物微納制造技術的優(yōu)缺點和使用條件。末尾,結合國內外研究人員的研究成果,對聚合物微納制造技術的未來發(fā)展做出展望。微納檢測主要是表征檢測:原子力顯微鏡、掃描電鏡、掃聲波掃描顯微鏡、白光...
微納制造的加工材料多種多樣,相對金屬材料與硅和玻璃等無機材料而言,聚合物基材廉價易得且具有更好的生物兼容性、電絕緣隔離性、熱隔離性等性能。近年來,基于聚合物的微加工制造技術已成為微細加工中的又一研究熱點。大量學者對基于聚合物的微加工技術如微注射成型技術、微鑄造技術及微壓印技術進行了深入的研究。由于聚合物材料提供了相當普遍的物理及化學性質,同時具有成本低及適用于大批量制造等眾多優(yōu)點,因而隨著微納米技術的不斷發(fā)展,聚合物材料在光學、化學、生物及微機電領域中獲得了越來越普遍的應用,不同微納結構制品具有不同的性能與應用場合。微納制造技術是指尺度為毫米、微米和納米量級的零件。景德鎮(zhèn)高精度微納加工 ...
在微納加工過程中,薄膜的形成方法主要為物理沉積、化學沉積和混合方法沉積。蒸發(fā)沉積(熱蒸發(fā)、電子束蒸發(fā))和濺射沉積是典型的物理方法,主要用于沉積金屬單質薄膜、合金薄膜、化合物等。熱蒸發(fā)是在高真空下,利用電阻加熱至材料的熔化溫度,使其蒸發(fā)至基底表面形成薄膜,而電子束蒸發(fā)為使用電子束加熱;磁控濺射在高真空,在電場的作用下,Ar氣被電離為Ar離子高能量轟擊靶材,使靶材發(fā)生濺射并沉積于基底;磁控濺射方法沉積的薄膜純度高、致密性好,熱蒸發(fā)主要用于沉積低熔點金屬薄膜或者厚膜;化學氣相沉積(CVD)是典型的化學方法而等離子體增強化學氣相沉積(PECVD)是物理與化學相結合的混合方法,CVD和PECVD主要用于...
“納米制造”路線圖強調了未來納米表面制造的發(fā)展。問卷調查探尋了納米表面制備所面臨的機遇。調查中提出的問題旨在獲取納米表面特征的相關信息:這種納米表面結構可以是形貌化、薄膜化的改良表面區(qū)域,也可以是具有相位調制或一定晶粒尺寸的涂層。這類結構構建于眾多固體材料表面,如金屬、陶瓷、玻璃、半導體和聚合物等??偨Y了調查結果與發(fā)現(xiàn),并闡明了未來納米表面制造的前景。納米表面可產生自材料的消解、沉積、改性或形成過程。這導致制備出的納米表面帶有納米尺度所特有的新的化學、物理和生物特性(比如催化作用、磁性質、電性質、光學性質或抗細菌性)。在納米科學許多已有的和新興的子領域中,表面工程已經實現(xiàn)了從基礎科學向現(xiàn)實應用...
微納加工中,材料濕法腐蝕是一個常用的工藝方法。材料的濕法化學刻蝕,包括刻蝕劑到達材料表面和反應產物離開表面的傳輸過程,也包括表面本身的反應。半導體技術中的許多刻蝕工藝是在相當緩慢并受速率控制的情況下進行的,這是因為覆蓋在表面上有一污染層。污染層厚度常有幾微米,如果化學反應有氣體逸出,則此層就可能破裂。濕法刻蝕工藝常常有反應物產生,這種產物受溶液的溶解速率的限制。為了使刻蝕速率提高,常常使溶液攪動,因為攪動增強了外擴散效應。多晶和非晶材料的刻蝕是各向異性的。然而,結晶材料的刻蝕可能是各向同性,也可能是各向異性的,它取決于反應動力學的性質。晶體材料的各向同性刻蝕常被稱作拋光刻蝕,因為它們產生平滑的...
微納加工當中,GaN材料的刻蝕一般采用光刻膠來做掩膜,但是刻蝕GaN和光刻膠,選擇比接近1:1,如果需要刻蝕深度超過3微米以上就需要采用厚膠來做掩膜。對于刻蝕更深的GaN,那就需要采用氧化硅來做刻蝕的掩模,刻蝕GaN的氣體對于刻蝕氧化硅刻蝕比例可以達到8:1。應用于MEMS制作的襯底可以說是各種各樣的,如硅晶圓、玻璃晶圓、塑料、還其他的材料。硅晶圓包括氧化硅片、SOI硅片、高阻硅片等,硅片晶圓包括單晶石英玻璃、高硼硅玻璃、光學玻璃、光敏玻璃等。塑料材料包括PMMA、PS、光學樹脂等材料。其他材料包括陶瓷、AlN材料、金屬等材料。微納制造技術是由零件構成的部件或系統(tǒng)的設計、加工、組裝、集成與應用...
高精度的微細結構可以通過電子束直寫或激光直寫制作,這類光刻技術,像“寫字”一樣,通過控制聚焦電子束(光束)移動書寫圖案進行曝光,具有很高的曝光精度,但這兩種方法制作效率極低,尤其在大面積制作方面捉襟見肘,目前直寫光刻技術適用于小面積的微納結構制作。近年來,三維浮雕微納結構的需求越來越大,如閃耀光柵、菲涅爾透鏡、多臺階微光學元件等。據(jù)悉,蘋果公司新上市的手機產品中人臉識別模塊就采用了多臺階微光學元件,以及當下如火如荼的無人駕駛技術中激光雷達光學系統(tǒng)也用到了復雜的微光學元件。這類精密的微納結構光學元件需采用灰度光刻技術進行制作。直寫技術,通過在光束移動過程中進行相應的曝光能量調節(jié),可以實現(xiàn)良好的灰...
研究應著眼于開發(fā)一種新型的可配置、可升級的微納制造平臺和系統(tǒng),以降低大批量或是小規(guī)模定制產品的生產成本。新一代微納制造系統(tǒng)應滿足下述要求:(1)能生產多種多樣高度復雜的微納產品;(2)具有微納特性的組件的小型化連續(xù)生產;(3)為了掌握基于整個生產加工鏈制造的知識,新設計和仿真系統(tǒng)的產品開發(fā)過程的全部跨學科知識進行條理化和儲存;(4)為了保證生產的靈活性和適應性,應確保在分布式制造中各企業(yè)的有效合作,以支撐通過新型商業(yè)生產、管理和物流方法來實現(xiàn)的中小型企業(yè)在綜合制造網(wǎng)絡中的有效整合;(5)是一個擁有更高級的智能和可靠性、可根據(jù)相應環(huán)境自行調整設置及生產加工參數(shù)的、可嵌入整個生產制造行業(yè)的制造系統(tǒng)...
皮秒激光精密微孔加工應用作為一種激光精密加工技術,皮秒激光在對高硬度金屬微孔加工方面的應用早在20世紀90年代初就有報道。1996年德國學者Chichkov等研究了納秒、皮秒以及飛秒激光與材料的作用機理,并在真空靶室中對厚度100μm的不銹鋼進行了打孔實驗,建立了激光微納加工的理論模型,為后續(xù)的激光微納加工實驗研究奠定了堅實的理論基礎。1998年Jandeleit等對厚度為250nm的銅膜進行了精密制孔實驗,實驗指出使用同一脈寬的皮秒激光器對厚度較薄的金屬材料制孔時,采用高峰值功率更有可能獲得高質量的的制孔效果。然而,優(yōu)異的加工效果不僅取決于脈沖寬度以及峰值功率,制孔方式也是一個至關重要的因素...
微納加工設備主要有:光刻、刻蝕、鍍膜、濕法腐蝕、絕緣層鍍膜等。微納檢測主要是表征檢測:原子力顯微鏡、掃描電鏡、掃描顯微鏡、XRD、臺階儀等。每一個設備都包含比較多具體的分類。光刻機,也被稱為曝光機,三大類:步進式光刻機,接觸接近式光刻,電子束曝光。微納制造技術是指尺度為毫米、微米和納米量級的零件,以及由這些零件構成的部件或系統(tǒng)的設計、加工、組裝、集成與應用技術。傳統(tǒng)“宏”機械制造技術已不能滿足這些“微”機械和“微”系統(tǒng)的高精度制造和裝配加工要求,必須研究和應用微納制造的技術與方法。微納制造技術是微傳感器、微執(zhí)行器、微結構和功能微納系統(tǒng)制造的基本手段和重要基礎。機械微加工是微納制造中較方便,也較...
無論是大批量還是小規(guī)模生產定制產品,都需要開發(fā)新一代的模塊化、知識密集的、可升級的和可快速配置的生產系統(tǒng)。而這將用到那些新近涌現(xiàn)出來的微納技術研究成果以及新的工業(yè)生產理論體系。給出了微納制造系統(tǒng)與平臺的發(fā)展前景。未來幾年微納制造系統(tǒng)和平臺的發(fā)展前景包括以下幾個方面:(1)微納制造系統(tǒng)的設計、建模和仿真;(2)智能的、可升級的和適應性強的微納制造系統(tǒng)(工藝、設備和工具集成);(3)新型靈活的、模塊化的和網(wǎng)絡化的系統(tǒng)結構,以構筑基于制造的知識。我造技術的研究從其誕生之初就一直牢據(jù)行國的微納制造技術的研究與世界先進水平業(yè)的杰出位置。深圳微納加工價目基于光刻工藝的微納加工技術主要包含以下過程:掩模(m...
微納測試與表征技術是微納加工技術的基礎與前提,它包括在微納器件的設計、制造和系統(tǒng)集成過程中,對各種參量進行微米/納米檢測的技術。微米測量主要服務于精密制造和微加工技術,目標是獲得微米級測量精度,或表征微結構的幾何、機械及力學特性;納米測量則主要服務于材料工程和納米科學,特別是納米材料,目標是獲得材料的結構、地貌和成分的信息。在半導體領域人們所關心的與尺寸測量有關的參數(shù)主要包括:特征尺寸或線寬、重合度、薄膜的厚度和表面的糙度等等。未來,微納測試與表征技術正朝著從二維到三維、從表面到內部、從靜態(tài)到動態(tài)、從單參量到多參量耦合、從封裝前到封裝后的方向發(fā)展。探索新的測量原理、測試方法和表征技...
濺射鍍膜有兩種方式:一種稱為離子束濺射,指真空狀態(tài)下用離子束轟擊靶表面,使濺射出的粒子在基體表面成膜,該工藝較為昂貴,主要用于制取特殊的薄膜;另一種稱為陰極濺射,主要利用低壓氣體放電現(xiàn)象,使處于等離子狀態(tài)下的離子轟擊靶面,濺射出的粒子沉積在基體上。它采用平行板電極結構,膜料物質做成的大面積靶為陰極,支持基體的基板為陽極,安裝于鐘罩式真空容器內。為減少污染,先將鐘罩內的壓強抽到小于10-3~10-4Pa,然后充入Ar氣,使壓強維持在1~10Pa。在兩極之間加數(shù)千伏的電壓進行濺射鍍膜。與蒸發(fā)鍍膜相比,濺射鍍膜時靶材(膜料)無相變,化合物成分穩(wěn)定,合金不易分餾,因此適合制備的膜材非常廣。...